
1

THE FAR ULTRAVIOLET SPECTROSCOPIC EXPLORER (FUSE)
INSTRUMENT DATA SYSTEM
Brian K. Heggestad and Robert C. Moore

The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road, Laurel, Maryland 20723-6099

Introduction
The Far Ultraviolet Spectroscopic Ex-

plorer (FUSE) instrument was designed to
obtain high-resolution spectra of faint objects
throughout the Galaxy. The FUSE satellite was
launched on June 24, 1999, on its three-year
mission to explore the universe using the
technique of high-resolution spectroscopy in
the far-ultraviolet spectral region. FUSE will be
one of the most far-reaching scientific explora-
tions of space to date. A central general-
purpose computer, the Instrument Data System
(IDS), controls the FUSE instrument. This is a
fully redundant, programmable processor that
provides command and telemetry functions for
all other subsystems in the instrument. The IDS
processor also provides science data processing
and storage, star tracker fine pointing data
processing, image processing, delayed com-
manding, rule-based autonomy and “safing,”
and instrument time and thermal management
functions.

This paper describes the architecture for
the IDS flight hardware and its real-time
embedded flight software. The design uses
commercial off-the-shelf (COTS) software
components as much as possible, to reduce cost
and software development time. The features of
the IDS design that provide radiation hardness
and fault tolerance are described. Implementa-
tion of software to meet the functional
requirements is accomplished using a relatively
small number of prioritized real-time tasks. A
commercial real-time operating system kernel
manages and supports these tasks. Inter-task
communication is described, as are the software
test and validation methods. The paper shows
how custom ground support equipment was

developed to facilitate software development
and testing.

Reliable communications between the
IDS and the FUSE spacecraft bus are accom-
plished using a MIL-STD-1553B bus that has
an imposed, deterministic real-time protocol.
Similarly, communication between the IDS and
the other instrument subsystems uses a second
MIL-STD-1553B bus that has its own time-
division multiplex real-time protocol. The
design of these real-time protocols is described,
with particular attention to reliability and
testability.

IDS Hardware
Figure 1 is a context diagram that shows

how the IDS connects with the spacecraft and
the other instrument subsystems. The FUSE
IDS is a fully redundant design in which at
most one of the two flight IDS boxes is
powered at a time. In Figure 1 redundant units
are shaded, as are the MIL-STD-1553B buses.
There are redundant interfaces between the IDS
and the FUSE spacecraft’s redundant command
and data handling (C&DH) processors. These
comprise a MIL-STD-1553B spacecraft data
bus (SDB) and redundant 1-Hz timing synchro-
nization signals. A second MIL-STD-1553B
instrument data bus (IDB) provides redundant
communications between the IDS and all of the
other subsystems of the FUSE instrument, each
of which has redundant interfaces to the IDS.
These other subsystems include the power
switching and distribution unit (PSDU), focal
plane assembly (FPA), mirror positioning
assembly (MPA), fine error sensor (a visible-
light star camera, FES), and detector (DET). In
addition to the IDB, the detectors provide
redundant science data interfaces to the IDS,

2

each of which can supply the IDS with 32-bit
data at rates up to 41,667 Hz.

Figure 1. IDS Context Diagram

Figure 2 shows the inner components of
the IDS. There is a MIL-STD-1553B protocol
controller that implements a remote terminal
(RT) for the SDB. The heart of the IDS is a
radiation-tolerant 68020 central processing unit
(CPU) that runs at 17 MHz and provides
approximately 4 Mips of throughput. A 68882
floating-point unit (FPU) permits hardware
floating-point calculations to be made. The
CPU is supported by 128KB of programmable
read-only memory (PROM), two 512KB banks
of electrically erasable PROM (E2PROM), and
1MB of radiation-tolerant static random-access
memory (SRAM). In addition to the SRAM
there is 48MB (two 24MB banks) of bulk
SRAM that has built-in single-bit error correc-
tion, double-bit error detection (SEC-DED)
error detection and correction (EDAC).

Figure 2. IDS Hardware Block Diagram

There is a watchdog timer (WDT) that
must be reset within 246 milliseconds, or else
the WDT will time out and reset the IDS. A
programmable timer permits the IDS to imple-
ment a “tick timer” for the real-time operating
system (RTOS), as well as 125 8-ms minor
frames each second, which are the “slices” of
real time to which most real-time IDS opera-
tions are synchronized. There is a custom
science interface that accepts and merges
science data from the two detector subsystems,
and a MIL-STD-1553B protocol controller that
implements a bus controller (BC) for the IDB.

IDS Software
Developing the IDS software was a

significant challenge because many real-time

3

and near-real-time tasks needed to be per-
formed concurrently:

• process FES images or generate FPD
packets from FES centroids

• collect, format and down-link house-
keeping and memory dump data from
instrument subsystems at rates of over
2000 bytes/second in nine packet types

• collect and sum detector pulse height
analysis (PHA) data

• collect, process, and store detector sci-
ence data at rates up to 32,000 samples
(64,000 bytes) per second. Note that
maintaining the science data storage and
down-link rates is hampered by storage
memory that operates at 8.5MHz, 1/2 of
the processor bus speed.

• format and down-link science data at a
rate of 14,000 bytes/second.

• allocate and de-allocate and initialize
memory for future data collections

• process commands (execute or forward
to subsystems) from the spacecraft at a
rate of 15 commands/second

• monitor any set of incoming housekeep-
ing data to autonomously detect and re-
spond to anomalous/operational changes

• execute stored time-tagged and scripted
commands

• manage the SDB (remote terminal) and
IDB (bus controller) interfaces

• collect and process temperatures from 64
thermistors to control the temperatures of
32 instrument thermal zones to within +/-
0.5 degree Celsius

• maintain the WDT that needs to be reset
at a rate greater than 4 Hz

• scrub bulk memory
The challenge was to implement time-

critical tasks with others that are less urgent.
For example, the BC, RT, and Detector manag-
ers must finish servicing the 1553 interfaces
and processing science data within each 8-ms
minor frame, while de-commutation of house-
keeping data and subsequent evaluation of rules
may occur over a 40-ms period, and allocation
of memory or processing of an image may be
allowed multiple seconds to complete.

Figure 3 shows the IDS software tasks
with their interface to the spacecraft, the
instrument subsystems, and to the other IDS
software tasks. The highest priority function,
time maintenance, is implemented as an
interrupt service routine (ISR). This function
sets the task schedule map to wake up each task
in those minor frames in which the task is to
run. Tasks are prioritized, with the most time-
critical tasks having highest priority.

Figure 3. IDS Software Architecture

4

Inter-task communication is imple-
mented with a software bus (SWB). A task
places a given message on the SWB, which
provides this message to any task registered for
it. In some cases, such as the storage and
retrieval of science data, information is com-
municated between tasks by direct access to
memory, rather than by the software bus.

Real-Time Operating System
The Versatile Real-Time eXecutive ker-

nel for embedded processors (VRTXsa), pro-
vided by Microtec Research, was chosen to
provide proven COTS multitasking support,
event-driven, priority-based scheduling, and
real-time control. The use of events to schedule
tasks allowed for easily mixing two types of
scheduling. The first is the routine scheduling
of tasks that happen in the same minor frame of
each second. The IDS timing manager sched-
ules these events. At each eight-ms interrupt
the timing manager reads from an array the
word that defines which tasks are to be
scheduled, and posts this word to the RTOS
task manager. Certain time-critical operations
occur at indeterminate times. In these cases,
when the data arrive, and are available for a
second task, the first task may post an event to
wake the first task.

Task priorities are assigned based on
the degree to which each task needs to act as a
real-time task. The order of the priorities, from
highest to lowest, is: BC manager, Detector
manager, RT Manager, DataIO, RTE, Guid-
ance, and Star ID. BC Manager and Detector
Manager must always finish their job within the
minor frame. The other tasks are not awakened
every minor frame, and have a longer period of
time in which to finish.

Spacecraft Command Language
The Spacecraft Command Language

(SCL) provided by Interface and Control
Systems, Inc., is the second COTS product
used in the IDS software. SCL comprises two
tasks, DataIO and RTE. These tasks provide the
IDS with scripting capability (time-tagged and
relative-time command capability, conditional

operations, etc). It also provides a rule engine
that allows for extensive autonomous function
capabilities based on evaluation of subsystem
and IDS telemetry. Changes in system state or
telemetry may trigger rules or launch scripts.

Software Bus
The majority of communication within

the IDS occurs on the software bus (SWB).
Commands received by the RT manager are
forwarded to the target tasks or beyond to the
instrument subsystems. Telemetry collected by
the BC manager from instrument subsystems is
forwarded to DataIO for rate limiting, and then
on to the RT manager to be sent to the space-
craft. Guidance notifies DataIO of events and
DataIO notifies the RTE of database changes.

The SWB is a set of support functions
used by all tasks except the Detector Manager.
A fixed set of packets is managed by the SWB.
These are long and short telemetry packets and
command packets. There is a common header
on all of the packets that identifies the contents
and thereby controls the routing of the packets.
A set of function calls allows the tasks to
register for a given packet ID, to request an
empty packet in which to place data from the
SWB, and to place a full packet on the SWB.
The SWB then notifies all tasks registered for
the packet, and provides them with a copy of
the packet. When the receiving task is finished,
it returns it to the SWB, which may then allo-
cate the packet again.

The SWB interface helps to isolate the
tasks, which do not know or care from whom a
given packet came, but only what type of
packet it is. In this way, the SWB provides a
significant contribution to the development and
testing of the software.

The IDS Bench Test Equipment (BTE)
used for software development, test, and vali-
dation also used the SWB and SCL, and has its
own RTE and DataIO. It is able to run the same
scripts and maintain the same database as the
IDS RTE. It also provides command, telemetry,
and script compilers. Command and telemetry
formats are maintained in a “C-like” language.

5

Once the SWB and RT Manager (the
command and telemetry interface to the
spacecraft) were in place, individual flight tasks
could be tested against ground tasks. Guidance
and Star ID tasks were in place and tested be-
fore the flight RTE. We were able to test these
tasks using near-operational scripts running on
the BTE RTE, and communicating across the
SWB as if it were the flight RTE. The same
scenario applied to the testing of other tasks.

Boot Code
Boot code provides a highly reliable

interface to support the application code. The
boot code resides in PROM and cannot be
mistakenly destroyed either by an errant
command from the ground or by malfunction-
ing software. This also means that it cannot be
intentionally changed or fixed. The boot code is
limited in scope to provide no more than the
required support. This allowed very complete
testing of all aspects of the boot code:

• communicating with the ground over the
SDB using CCSDS packet format,

• running of a limited number of hardware
self tests,

• supporting a limited number of com-
mands that allow the boot code to coexist
with the spacecraft; e.g., a command to
select the source of the 1-Hz timing
signal from the spacecraft,

• supporting commands to load memory
(RAM and E2PROM) and enable the
upload of new application code,

• supporting commands to dump and
checksum memory to provide verifica-
tion of application code loads and pro-
vide debug information in the event of an
IDS failure or suspected failure during
either boot or application modes.

RT Manager
The RT Manager is the interface be-

tween the IDS and the spacecraft, and thereby
between the IDS and the ground. Transfer of
data across this interface is managed by the
hardware protocol controller. The SDB follows
a strictly regulated schedule that is synchro-
nized to the 1-Hz and 125-Hz interrupts. Spe-

cific transactions are allowed in each of the
minor frames. Interrupts notify the IDS when
telemetry packets have been transferred from
the IDS, or command packets have arrived.

The RT Manager implements several
functions. It manages the MIL-STD-1553B
protocol controller. On incoming messages it
removes the protocol controller formatting and
generates a CCSDS packet. It performs CCSDS
level verification of the incoming command
packets. On outgoing data it adds the protocol
controller formatting. It maintains a SWB
interface, forwards incoming commands to the
appropriate tasks, and receives telemetry
packets to be forwarded to the spacecraft via
the SDB. It also provides a command interface
for the IDS timing manager and provides a
“reformat” service for several SDB packets that
do not follow the standard IDS packet format.

BC Manager
With the exception of a high-speed

science interface with each detector, all com-
munication with the instrument subsystems is
through the BC Manager. The dissemination of
commands and the collection of telemetry
across the IDB is strictly controlled by a set of
tables governing the transactions that occur
each minor frame. The IDB is heavily loaded.
In the event of retries, less than 0.5 ms of extra
time is available to complete all transactions in
many of the minor frames. To insure a timely
start of bus transactions each minor frame, the
BC Manager is the highest priority task.

At the beginning of each minor frame a
single write triggers the MIL-STD-1553B pro-
tocol controller to execute the control sequence
assembled in the previous minor frame. The
BC manager then builds the control sequence
and formats the data for IDB transmission for
the following minor frame and processes the
data received in previous minor frames.

The BC Manager maintains a command
queue for each of the subsystems, as well as
one for itself. At the time in the schedule that a
subsystem may receive a command, the BC
Manager checks the queue for commands that
may be sent. The BC Manager collects telem-

6

etry according to a fixed schedule. When a
packet is complete, it formats the data and
issues it to the software bus. Sometimes it posts
a RTOS wake-up call for the receiving task.

BC Manager implements a MIL-STD-
1553B interface that is tailored to each of the
subsystems. Command and telemetry formats
and rates vary among the subsystems. This
served to greatly complicate the BC manager.
Dedicated code is written to assemble some
subsystem housekeeping where the IDS must
search through the subsystem data in order to
build a telemetry packet. The same is true for
instances in which the IDS must interpret
subsystem commands and send them on to the
subsystem in different format and multiple
steps. A series of tables was generated to
control most BC manager functions.

The BC manager updates IDS telemetry
with information concerning the state of the
IDB and the subsystems, as well as the state of
the BC manager itself and the commands it has
processed.
rule DET1CURRMONITOR
 subsystem DET1
 category RT04
 priority 27
 activation YES
 continuous NO
 if (DET1CUR >= 184) then -- 184 => 350 mA
 msg "RULE DET04 I_DET1CUR=", I_DET1CUR
 deactivate DET1CURRMONITOR
 exec DET1CURRMONITOR_SCRIPT in 0 ticks
 priority = 27
 end if
end DET1CURRMONITOR

Figure 4. Example of a Rule

Real-Time Executive
The RTE task provides the IDS with

scripting and rule-based autonomy capabilities.
RTE scripts, rules, and database items are
stored in the script and rule database (see
Figure 3). An RTE rule is evaluated each time
the RTE receives a notification from DataIO
that a database item associated with the rule has
changed. At this time, the RTE checks the
premise of the rule, and executes associated
commands if it is satisfied. See Figure 4 for an
example of a rule.

RTE scripts may be scheduled to
execute immediately, at a specific time, or at a

relative time. They may be scheduled in real
time or by rules or scripts. The scripts and rules
may contain embedded packets that are placed
on the SWB. This provides a way by which
subsystem commands may be issued to the
SWB for delivery to IDS tasks or instrument
subsystems (the first way being the up-link to
the IDS RT Manager). See Figure 5 for an
example of a script.
script DET1CURRMONITOR_SCRIPT
 wait 2 seconds
 if (I_DET1CUR >= 184) then
 msg "PERSISTANCE MET I_DET1CUR=", I_DET1CUR
 cexl I_DET1HVPWROFF
 wait 1 second
 cexl I_DET1HVGRIDOFF
 else
 msg "PERSISTANCE NOT MET I_DET1CUR=", I_DET1CUR
 end if
 activate DET1CURRMONITOR
end DET1CURRMONITOR_SCRIPT

Figure 5. Example of a Script

The RTE is largely a COTS product;
however, the interface to the SWB, some dedi-
cated memory management functions, com-
mand handling and housekeeping telemetry
updating capability are required to port the
COTS product to the IDS. The RTE provides
extensive and complicated software capability
to the IDS with a minimal investment in testing
beyond the interface software. Owing to the
isolation of the RTE on the SWB, significant
testing could be done using only DataIO, the
RT Manager, and the BTE.

DataIO
DataIO supports the RTE by monitoring

incoming telemetry, updating the flight data-
base when changes in the incoming telemetry
are significant, and notifying the RTE via SWB
messages when these changes occur. The soft-
ware that performs this is the COTS product
together with a wrapper that integrates it with
the rest of the IDS. The COTS DataIO does the
actual de-commutation of the packet, based on
the packet ID, the de-commutation record for
the packet (see Figure 7), and the parameters
for the database item (see Figure 6). The defi-
nition of the data includes the data type, size,
conversion polynomials, and limits at which
alarms are generated. The data type determines
what other parameters are included in the re-

7

cord. For example, discrete database items will
not have a conversion polynomial specified.
data COFM, 307, "I_DET1AUXCUR_COFM"

numOfCoeffs = 6
Coef = 1.99672
Coef = 3.58939
Coef = -0.0459486
Coef = 0.000431326
Coef = -1.74405e-006
Coef = 2.63799e-009

end COFM
data ULAS, 306, "I_DET1AUXCUR"
-- DESCR: "DET1 Aux Power Current"

flags = 8192
rawValue = 0
engValue = 0
highRed = 200
highYellow = 100
lowYellow = -1
lowRed = -2
coeffID = 307

end ULAS

Figure 6. Flight Database Record
data DCMC, 57, "I_DET_T28_HSK"
 flags = 3
 numRecords = 3
 recordID = 304
 dataStructure = 2
 pointerIncrement = 30
 signExtend = 0
 mask = 65535
 lshift = 0
 order = 0
 recordID = 306
 dataStructure = 1
 pointerIncrement = 41
 signExtend = 0
 mask = 255
 lshift = 0
 order = 0
 recordID = 308
 dataStructure = 2
 pointerIncrement = 42
 signExtend = 0
 mask = 65535
 lshift = 0
 order = 0
end DCMC

Figure 7. Flight De-Commutation Record

Wrapped around the COTS product is
software that provides an interface to the IDS.
This includes an interface to the IDS SW bus,
software to format the incoming telemetry
packets such that the COTS DataIO can inter-
pret it, and software to handle DataIO configu-
ration commands. So long as the IDS flight
DataIO has been configured to de-commutate a
given packet, telemetry items within the packet
may be added, deleted, or modified by the
upload of new de-commutation and database
records. Dedicated flight code changes are re-
quired to add new packet types to those that are
being de-commutated.

Because DataIO is the task that handles
telemetry, it was the obvious task in which to

handle the control of the telemetry down-link
modes and data rates. It was also a good task to
place a number of smaller jobs that required
access to telemetry, or that simply did not fit in
any other location. Therefore, DataIO became a
“catch-all” task that performs table-controlled
telemetry down-link rate control, memory man-
agement, instrument thermal control, peak-up
count level monitoring, IDS memory load and
dump, table dumps, PHA calculations, memory
scrubbing, and numerous other small tasks.

DataIO is awakened every 40 ms. It has
its own internal schedule that governs what it
does during that 40-ms frame. It must finish the
tasks assigned to that frame during the allotted
time.

Detector Manager
The detector manager is a compact task

that is designed to read science data from the
detectors and then process and store the data as
fast as possible. The IDS has a requirement to
handle 32,000 samples/second without losing
science data. The hardware FIFO through
which science data arrive is 256 samples deep.
This means that the detector manager must be
able to read and process 128 samples before the
end of each minor frame. If it does not, science
data may be lost. The detector manager is the
second highest priority task.

The SWB interface (command inter-
face) for the detector manager is handled by
DataIO. DataIO also manages the memory into
which the detector manager writes science data.

Guidance
The Guidance and Star Identification

(StarID) tasks work together to fulfill the atti-
tude processing requirements of the IDS. The
Guidance task does the bulk of the attitude pro-
cessing (slewing, image processing, guiding,
and peak-up). The Star Identification task was
formed to perform the star identification for the
Guidance task. Star identification needs to run
concurrently with the Guidance task's perform-
ance of unidentified tracking. By locating Star
ID in a separate task, the RTOS could be used

8

to provide the multitasking necessary without
significant software development effort.

The Guidance and Star Identification
tasks were designed to give the controllers of
the instrument maximum script control over the
fine pointing capabilities. A “tool box” ap-
proach was implemented. A typical acquisition
of science data would occur as shown in Figure
8. After each step (coarse slew, image acqui-
sition, etc.) the success/failure status is made
available in the SCL database so that the script
may, if so written, intelligently choose the next
step. For example, if image acquisition fails,
the script may try again before moving on to
processing the image.

Target Acquisition
 Script command to Guidance: Perform Coarse Slew
 Script command to Guidance: Get Image
 Script command to FES: Configure and get image
 Script command to Guidance: Process image
 Script command to Guidance: Guide on unidentified stars
 Script command to Star ID: Identify stars
 Script command to Guidance: Guide on identified stars
 Script command to Guidance: Perform peak-up (perform
 table-driven series of small slews, and with DataIO,
 select the position at which the highest count of
 detector events is collected)
 Script command to Guidance: Adjust FPA, fine slew
Exposure
 Scripted commands to detectors, IDS bulk memory manager,
 and detector manager to collect science data

Figure 8. Fixed Target Exposure Sequence

Further flexibility is achieved in the
Guidance and Star ID tasks by using tables of
parameters to control many of the functions.
Among others, these tables include image pro-
cessing parameters, attitude estimation parame-
ters, optical distortion parameters, and a peak-
up configuration table.

 Guidance works in six modes: idle,
slewing, image processing, unidentified track-
ing, identified tracking, and moving target
tracking. In image processing, the Guidance
task may be occupied for multiple seconds.
Because the real-time constraints on guidance
are not so limiting as on many of the other
tasks, the guidance task is sixth in priority.

Star Identification
The Star Identification task performs

only the identification of the stars. It has two
modes, on and off. Once the Guidance task
completes processing a FES full image, this
task receives the centroids extracted from the

full image. It identifies the star field by com-
paring the centroids to reference star positions
specified in an uploaded star table. Uploaded
parameters control aspects of the star identifi-
cation, such as minimum and maximum angu-
lar separation of star pairs, the minimum num-
ber of stars that must be matched for a success-
ful identification, and the desired number of
matches (after which the search is stopped).
When the identification is complete, an SCL
database item is set to indicate to the con-
trolling script the success or failure of the
identification.

Star identification can take tens or hun-
dreds of seconds to execute. It is given lowest
priority of the major IDS tasks.

The isolation of the Star Identification
and Guidance tasks on the SWB allowed for
complete task-level testing on a development
PC running a BTE version of the SWB. For
these tasks, integration on the target system
was required only for system-level testing.

Conclusion
We have presented a description of the

IDS flight hardware and real-time embedded
flight software. The IDS hardware design
includes redundancy, highly radiation-tolerant
static random-access memory (SRAM), EDAC,
and fault-tolerant MIL-STD-1553B buses. The
software is built on a proven RTOS and uses a
small number of prioritized tasks to meet its
functional requirements.

Acknowledgements
H. Landis Fisher, Patricia K. Murphy,

and Micheal J. White of APL contributed the
guidance and image processing software. Jim
Van Gaasbeck (ICS) provided science process-
ing software and the port of SCL to the IDS
platform. Bruce A. Scherzinger of APL con-
tributed the boot code and MIL-STD-1553B
control software. Joshua F. Offutt (ICS) and Pat
Cappeleare (ICS) were the primary BTE devel-
opers.

9

Robert C. Moore is the FUSE IDS lead
system engineer. Brian K. Heggestad is the
FUSE IDS lead software engineer.

