
SECTION 8

CCIl lANGUAGE MANUAL

TABLE OF CONTENTS

Section

1. 	 INTRODUCTION..

CONCEPTS

Purpose

Organization.

IUE System. .

Operational Modes

Procedures.

Subroutines.

Modules .

FORMATS. . .

Character Set

CCIl Statement Format

CRT KEYBOARD OPERATIONS

2. 	 CONSTANTS AND VARIABLES

CONSTANTS ..

Integer or Real

Representation of Constants

VARIABLES

Global Variables.

local Variables.

Passed Arguments ..

Environment ..

Page

1-1

1-1

1-1

1-2

1-2

1-4

1-5

1-7

1-8

1-9

1-9

1-11

1-13

2-1

2-1

2-1

2-2

2-3

2-3

2-3

2-4

2-5

lii

TABLE OF 	 CONTENTS (Continued)

Section 	 Page

3. 	 ASSIGNMENTS 3-1

DECLARATION DIRECTIVES 3-1

INTEGER - Declare Integer Number. 3-1

REAL - Declare Real Number 3-2

EQV - Declare Equivalent Variable 3-2

NEWSYM - Clear Local Variable Table 3-3

ASSIGNMENT STATEMENTS. 3-3

FUNCTIONS. 3-6

NUM - Find Dimension. 3-6

DEVICE - Find Redundant Unit Number 3-7

RAW - Find Raw Telemetry Value. . . 3-7

ALRMHI - Find Telemetry High Alarm. 3-8

ALRMLO - Find Telemetry Low Alarm . 3-8

STATIC - Test for Static Telemetry. 3-8

ABS - Convert to Absolute Value. . 3-9

HEX - Convert Integer to Hexadecimal. 3-9

UNSPEC - Convert Characters to Hexadecimal. 3-10

MOD - Compute Modulus 3-10

BIT - Convert Bits to Decimal 3-10

PPRNUM - Find Data Base Record PPR Number 3-11

iv

TABLE OF CONTENTS (Continued)

Section 	 Page

4. 	 CONTROL DIRECTIVES 4-1

ALL MODES. . 4-1

Comments 4-1

EXEC - Start Procedure Execution 4-2

STEP - Select Procedure Execution Speed. 4-3

PROCEDURE ONLY 4-4

PROC - Define Procedure Entry Point. 4-4

SUBR - Define Subroutine Entry Point 4-4

PEND - Define Procedure or Subroutine

Physical Termination Point. 4-5

RETURN -	 Return from Subroutine or Procedure . 4-5

CALL - Start Subroutine Execution. 4-6

CONTINUE - Do Nothing. 4-7

GOTO - Jump. 4-7

IF - Test Conditions 4-8

WAIT - Wait for Conditions 4-9

DO - Start Loop Execution. . 4-10

HOLD - Suspend Procedure Execution 4-13

PROCEDURE AND SUSPENDED PROCEDURE. . . 4-14

ABORT - Terminate Procedure Execution. 4-14

GLBABORT - Termi na te A11 Procedures. . 4-14

v

TABLE OF 	 CONTENTS (Continued)

Section Page

SUSPENDED PROCEDURE ONLY 4-15

GO - Resume Procedure Execution. 4-15

5. 	 COMMAND DIRECTIVES ... 5-1

SET DECODER - Format Commands for Redundant

SW -- Format Commands for Redundant Unit

COMMAND HANDLING 5-4

Encoder Se1ecti on. 5-4

Selection 5-4

EXAMINE SERIAL - Display Command Parameters. . 5-6

SET TRANSMIT - Select Command Transmission

Mode. 5-7

SET CMDMODE - Select Command Ground-Transmission
Path. 5-7

SET VERIFY - Select Verification Mode. 5-8

REPLY CMD - Process Command Requests. 5-9

NORMAL SERIAL COMMANDS 5-10

:DMU - Data Multiplexer Unit. 5-11

:EV - Engine/Value ... 5-13

:FES - Fine Error Sensor 5-15

:FOCUS - EEA Focus ... 5-16

:IRA - Internal Reference Assembly 5-16

:NUTAT - Nutation 5-18

vi

TABLE OF CONTENTS (Continued)

Section

:PRECESS - Precession ..

:PAS - Panoramic Scanner

:RW - Reaction Wheel

:SCAN - SSCL Scan ...

:SIHTR - SSCL Camera Setup

:SIALGN - SSCL Camera Setup.

:SIUVC - SSCL Camera Setup .

SPECIAL SERIAL COMMANDS.

:APER - EEA Aperture

:CAMSEL - EEA Camera Select.

:DISP - EEA Dispersion ...

:SIMODE - SSCL Mode Control.

:CRU - Command Relay Unit.

:LVSW - Low Voltage.

OTHER COMMANDS

COMMAND - Build Unique Command.

:SEND - Execute Unique Command .

:IMP - Execute Impulse Commands.

COMMAND SEQUENCES.

CMDSEQ - Start Sequence Build.

Page

5-18

5-19

5-19

5-21

5-22

5-22

5-23

5-24

5-24

5-25

5-25

5-26

5-27

5-28

5-31

5-31

5-31

5-32

5-36

5-36

vii

TABLE OF 	 CONTENTS (Continued)

Section

ENDSEQ - Stop Sequence Build

SEQWAIT - Specify Sequence Wai t Time

:SEQ - Execute Command Sequence.

6. 	 ON-BOARD COMPUTER (OBC) DIRECTIVES.

COMMANDS TO OBC ..

:OBC GO - Turn On.

:OBC RESET - Turn Off.

:OBC FIX1 - Select Bank 1 as Fixed

:OBC FIX2 - Select Bank 2 as Fixed

:OBC DUMP - Dump Fixed Bank.

:OBC CMND - General Command.

:OBC HLOAD - Load Memory Bank.

:OBC HLD82 - Load Memory Bank.

:OBC SLOAD - Load Memory Locations

:OBC PATCH - Load Memory Locations

:OBC HDUMP - Dump Selected Bank.

:OBC SDUMP - Dump Selected Bank.

:OBC LDBLK - Load Data Blocks ..

MEMORY BANK IMAGE PROCESSING .

OBCLDPRT - Print Tape-Load File ..

OBCMRPRT - Print Load File ...

Page

5-36

5-37

5-37

6-1

6-2

6-2

6-2

6-2

. . . . 6-2

6-2

6-3

6-4

6-4

6-5

6-6

6-6

6-7

6-7

6-8

6-8

6-8

viii

Section

TABLE OF CONTENTS (Continued)

OBCDMPRT - Print Dump File

Page

... 6-9

OBCLDTYP - Display Selected Load Locations

BPARDB - Build Parameter Set Data Block

6-9

OBCDMTYP - Display Selected Dump Locations 6-10

OBCLDTAP - Start OBC Tape/Disc Transfer. 6-10

REPLY OBCTAP - Process Image Requests. 6-10

OBCCKSUM - Calculate Checksum. 6-11

COLLDUMP OBC,ENB - Collect OBC Dump Data. 6-12

SET RECQUAL,OBC - Reconstruct OBC Dump 6-12

OBCRECON - Construct Best Dump Copy. . 6-13

OBCCOMP - Compare Load and Dump Files. 6-14

OBCCOPY - Transfer Dump Image to Master Image. 6-14

DATA BLOCK BUILDING .. 6-15

OBCSEQ - Start OBC Sequence Build. 6-15

OBCEND - Stop OBC Sequence Build . 6-16

OBCWAIT - Specify OBC Sequence Wait Time 6-16

BSEQDB - Build Commanding Data Block (17). 6-17

OBCDB14 - Build Data Block (14) ... 6-18

(12, 13,16) 6-19

OBCDB10 - Build Data Block (10). 6-19

OBCLDBLK - Load I&T Data Blocks. 6-20

ix

TABLE OF 	 CONTENTS (Continued)

Section 	 Paoe
----"'-

7. 	 VARIABLE ADDRESS MEMORY (VAM) DIRECTIVES. 7-1

COMMANDS . 7-1

:VAM - Load VAM. 7-1

PROCESSING 7-1

COLLDUMP VAM,ENB - Collect Dump Data 7-1

SET RECQUAL,VAM - Reconstruct Dump 7-2

VAMRECON - Construct Best Image .. 7-2

VAMCOMP - Compare Load and Dump Files. 7-3

VAMPRT - Print VAM Images. 7-3

SWITCH - Generate VAM Decom Tables 7-4

VAMCOPY - Transfer Dump Image to Master Image. 7-4

8. DATA PROCESSING DIRECTIVES. 8-1

TELEMETRY 8-1

SET TLMIN - Select Input Stream. 8-1

SET BUFFACT - Select Buffer Size 8-2

SET MFFORMAT - Select Decommutation Format 8-2

SET MFQUAL - Specify Quality Checks. 8-3

SET TLMDISP - Select Update Cycle .. 8-3

SET MFSTATIC - Select 'No Update' Limit. 8-5

SET THS - Select THS Processing Mode .. 8-6

x

Section

TABLE OF CONTENTS (Continued)

Page

SET DDPS,RATE - Select OOPS Rate Parameters. 8-7

COLLOUMP - Select Raw Buffer Storage

8-10

8-7

CRT OUTPUT . . 8-8

DISPLAY - Transfer Info to CRT 8-8

PAGE - Bring Canned Page to CRT. 8-9

FREEZE - Inhibit CRT Update. 8-9

UNFREEZE - Permit CRT Update . 8-10

PRINTER OUTPUT

DISPLAY - Transfer Info to Printer 8-10

SNAP VIRTUAL - Transfer Canned Page to Printer 8-11

SNAP CONSOLE - Transfer CRT Image To Printer 8-11

SET SPOOL - Select Printer for SNAP IS. 8-11

TOP - Top of Page, Low Speed Printer 8-12

STRIPCHART OUTPUT. . . 8-12

PEN ON - Activate Pen. 8-15

PEN OFF - Deactivate Pen 8-16

PEN CAL - Set Pen Calibration Value. 8-16

PEN CLEAR - Clear Pen Assignment Matrix. 8-17

PEN SAVE - Store Pen Assignments . . . 8-17

EXAMINE PENMATRX - Display Stored Pin

Assignments 8-17

xi

-..,..

TABLE OF CONTENTS (Continued)

Secti on

PEN RESTORE - Copy Stored Pen Assignments

to Pen Matrix 8-18

PEN MODE,REALTIME - Set Stripcharting to

Realtime Mode. 8-18

PEN MAIN - Assign Realtime Maincom or Supercom 8-18

PEN SUBC - Assign Realtime Subcom. 8-19

PEN MODE,DELAYED - Set Stripcharting to

De 1ayed Mode. . . 8-20

PEN - Assign Telemetry to SCR in Delayed Mode. 8-21

Page Names Appendix A A-I

xii

SECTION 1. INTRODUCTION

SECTION 1. INTRODUCTION

CONCEPTS

Purpose

This manual defines and illustrates the computer operations associ
ated with the Control Center Interactive language (CCIl), a subset
of the IUE Control Center operational software system. This manual

assumes that the reader has no previous computer programming ex
perience, although from time to time reference will be made to com
puter terms for the benefit of those who do have some programming
background.

CCIl is a high-level computer language, that is, more like the FORTRAN
language than an assembly language. This means that instructions to
the computer are input in a form that approximates an English language

sentence rather than a pure string of numbers. Incorporated in CCIl
are instructions for monitoring telemetry, for requesting commands
to be sent, for specifying the display or print of information for

documentation purposes, and for control of sets of instructions called
procedures.

Confusion is sometimes caused because this manual is designed to be
used primarily by procedure writers and reviewers, and because the
predecessor of CCIl was called the Procedure Control language (PCl).
However, almost all of the instruction set of this language may be
used as single computer requests issued from the keyboard, in addi
tion to being used as a pre-defined combination of requests that are
stored in the computer, called a procedure. Furthermore, CCIlhas a

1-1

much larger instruction set than PCl and, therefore, is capable of

performing many more tasks than w"ill be discussed in this manual.

For a full discussion of all CCIl capabilities, such as maneuvering,
data base maintenance, and experiment display, refer to the latest

Computer Science Corporation "Control Center Software System

Operations Manual" (CSC/SD-76/6055, 1M 1-76-109).

Organization

This manual is informally divided into two parts. Sections 1 and 2

discuss concepts and background information necessary for proper utili

zation of the CCIl. The remainder of the manual discusses the in
structions (directives) and gives examples of their use. Appendixes

and an index are also included. The index will provide multiple

references to information not thoroughly covered as a single topic
in the text. Therefore, to thoroughly understand a subject (sub
routines for instance), look in the index for the entry to find other

references to the subject. Of course, the index shows all CCIl

directives in alphabetical order so there is no need to search the

Table of Contents.

IUE System

Figure 1-1 shows the basic computer system used for IUE control.

Directives are available for transferring infornlation to and from
the various devices shown in the figure. Analyst interaction is
primarily with the CRT keyboard and display and with the stripchart
recorders. Any requested printer or magnetic tape output is usually
brought in by computer operations personnel.

Commands and individual (non-procedure) requests are made from the

CRT keyboard. There are also written procedures which are loaded into

the system from magnetic tape. These procedures are executed by typing:

EXEC (procedure name), (arguments).

1-2

STRIP

CHARTS

r-
I
I

RX

COMPUTER

TX

--,

CARD

READER

t
I
II

L..------EtGHT SETS------..J

Fi gure 1-1. IUE System

1-3

Operational Modes

CCIl has been divided into units, called operational modes, to dis
tinqlJish the separate uses of the instruction set. These modes are:

a. Procedure
b. Single-statement
c. Suspended-procedure

The Procedure mode generally uses the complete instruction set, while
the other two modes use approximately the same subset of the total
instruction capabilities. Each mode always has a defined set of
legal directives. The Procedure mode uses all directives except the
directive in Section 4 under the heading SUSPENDED PROCEDURE ONLY,
the GO directive. The single-statement mode uses all directives ex
cept those in Section 4 under the headings PROCEDURE ONLY, PROCEDURE
AND SUSPENDED PROCEDURE, and SUSPENDED PROCEDURE ONLY. Finally, the

Suspended procedure mode uses all directives except those in Section 4
under the heading PROCEDURE ONLY.

While this is a reasonable basis for dividing CCIl into smaller units,
too much emphasis should not be placed on this concept. There are
other operating characteristics which are just as, if not more, im
portant as available directives. One might just as well say that
there are only two modes, Single-statement and Procedure. The Sus
pended procedure mode is operationally a form, or subset, of the
Procedure mode.

One can operationally go back and forth between the Single-statement
and Procedure modes and go back and forth between the Procedure and
Suspended procedure modes, but one cannot go back and forth between
Single-statement and the Suspended procedure modes. Additionally, a
family of variables (refer to Section 2) is passed between the Pro
cedure and the Suspended procedure modes, but the Single-statement
mode has a unique set of variables.

1-4

Procedures

Another confusing term in the CCIl vocabulary is "procedure." Often
procedure is used to mean the conglomeration of whatever is neces
sary to run some operation on the computer; e.g., Camera Test Pro
cedure. This meaning is synonymous with the words "task" or
"operation." For CCIl purposes, this is not a precise enough defi

nition because it can include more than one actual CCIl procedure and

it can include one or more CCIl subroutines.

Specifically, a CCIl procedure is a set of statements that begins
with a PROC statement (an acronym for PROCedurE!) and ends with a PEND
statement (an acronym for Procedure END). The procedure's set of
statements cannot include any other PROC or PEND, which means a proce

dure cannot contain another procedure or a subroutine. Procedures
may contain references to other procedures and subroutines by contain
ing specific directives which cause them to be executed or run.

Procedures must have a unique label on the PROC statement that speci
fies the name of the procedure. labels, other than the PROC label,
can be coded into a procedure as a prefix on any directive. These
labels need to be unique within a procedure, but need not be unique
in the total system. That is, they may be dupli cated in other proce
dures and subroutines without causing any problems. labels are used
in conjunction with the GOTO, IF, DO, HOLD, and GO directives. They
may also be used without any functional purpose, as headings for place
marking or for ease of reading.

Entry into a procedure, through the issuing of an EXEC directive, can
be accompanied by the passing of up to eight arguments*. The value
of these arguments are stored in an AF array, and are accessed by the
procedure by reference to AF(i), ni" being a va"lue one to eight. A
procedure may be entered from either the keyboal~d (Si ngl e-statement

mode), from another procedure, or from a subroutine.

* See Index for reference to other discussion of this topic.

1-5

local variables* may be defined by a procedure. The names of these
variables can duplicate local variable names in other procedures.
They should not duplicate names used for any global variables or
names used for any local variables in subroutines which a procedure
references. Further explanation of this concept is given under the

heading "Environment."

Subroutines

A CCIl subroutine is a set of statements that begins with a SUBR
statement and ends with a PEND statement. The set cannot contain
any other SlIBR, PROC, or PEND statements; that is, it cannot physi
cally contain any other subroutine or procedure. However, subroutines
may contain directives which reference other procedures and subrou
tines.

A unique label is also prefixed to the SUBR directive to generate
the subroutine name. This means the name cannot be the same as a
name used on a SUBR directive for any other subroutine. It can,

however, be the same as a name of a procedure, since the PROC and
SUBR directives are handled differently.

labels, other than a SUBR label, are handled in the same manner as
discussed in the paragraph under the Procedures heading. They also
must be unique within the subroutine.

Entry into a subroutine is made by issu"ing a CAll directive. Up to
eight arguments can be passed; the value of these arguments are
stored in an array named ARG. They are accessed by the subroutine
by reference to ARG (i), ,. ii' bei ng a value one to ei ght. Subrouti nes

can be called from a procedure or from another subroutine but not
from Single-statement mode.

Subroutines may also reference the AF argument array of the procedure
that was being executed before the subroutine was called.

* See Index for reference to other discussion of this topic.

1-6

Local variables may also be defined by a subroutine. The name of the
variable can duplicate a local variable name in other subroutines.
It should not duplicate names used for global variables or names used
for local variables in the procedure which called the subroutine.
Refer to the Environment heading for further discussion.

Modules

The previous headings have shown some of the differences between pro

cedures and subroutines. In some aspects, they have identical charac
teristics. Rather than repeating the words IIprocedures and subrou
tines ll when referring to the similarly handled concepts, the terms
II modul ell or II rou ti nell wi 11 be used to mean either a subrouti ne or a

procedure.

All modules have single entry points, the label, which defines the
module. Once entered, the module does not have to execute in se
quential order from top to bottom, it may execute in any path.

Multiple RETURN directives can be coded into routines to provide
alternate exit paths. If no RETURN is used, the routine may still
exit through the PEND statement.

When writing control center operational routines, a series of state
ments can take the form of either a single procedure or can be a pro
cedure connected with variable numbers of other procedures and sub
routines. Initial coding should strive for straightforward simplic
ity, not for complicated sophistication. Unless multiple modules are
needed, stick to a single-procedure operation to avoid the myriad of
problems associated with multiple modules.

The obvious question arises: when are multiple modules needed? A

few examples will illustrate the concept. Let's suppose a routine is
being written for a device and this routine requires a particular

configuration of the device before the routine can execute. One

1-7

option is to code the configuration statements on the front of the
procedure, or, if available, to execute an existing procedure or
subroutine that currently performs the configuration task. The
second alternative implies that the contents of the current computer
resident group of routines is known. If the contents are known and
if the vari ab1 e names used wi 11 cause no problem, then use the ex
isting procedure to do some of your work.

Calling subroutines may have the effect of reducing the total physical
size of the routine. If a set of statements are duplicated several
times throughout a procedure, they might be removed and coded once
as a subroutine. Then a single CALL statement in the procedure may
be used rather than the set of statements. It is also possible to
write a more structured procedure by placing sets of detailed code

in subroutines and then having the procedure call these structures.

FORMATS

Character Set

All characters are in 029 card punch format. The following characters
may be used in creating label or variable names:

A-Z capital letters

0-9 decimal digits

The remainder of the character set are characters that have special
meaning to the operational system. They cannot be used in labels or
variable names. They may, with the exception of the single quote
and the semicolon, be used in text output, that is, character strings
between single quote marks.

Character Description CCIl Function

* asterisk In card column 1, start of comment

field; otherwise multiplication

1-8

Character

=

+

/

&

>

<

Description

blank

comma

equal

decimal point

1eft pa renthes is

right parenthesis

single quote

plus

minus

slash

semicolon

colon

and

vertical bar

not

ri ght bracket

1eft bracket

CCIl Function

Delimeter, or separation between
operational fields

Delimeter between argument fields

Equal ity

Delimeter for logical operations

or as numerical decimal placement

Start of index field for array or
altered precedence of operation

End of index field for array or an
altered precedence of operation

Start and end of text definition
(character string for display or
print); or start and end of
special input parametero

Addition

Subtraction or 2's complement

Start of comment or division

End of record (CCIl); end of

executable function (PCl)

Start of command field

logical and

logical inclusive or

Unary not or l's complement

Relational greater than

Relational less than

Any other characters found on a ~29 card punch may be used in text
string only.

1-9

CCIl Statement Format

A CCIl statement is a string of characters consisting of four fields.
If a semicolon is encountered, the statement is terminated. Its
fields, from left to right, are:

label Field (optional in procedure mode, illegal in others)

a. Starts in column 1 with an alphabetic character.
b. One to eight characters in length.
c. Contains only alphabetic characters or decimal digits.
d. Terminates with a blank or a semicolon.

Directive Field (required)

a. Starts in colunm 2 or beyond.

b. Is either a:

(1) Directive defined in this manual, or
(2) A defined variable.

c. Terminates with a blank, an equal sign, or a semicolon.

Argument Field (dependent on directive)

a. May contain multiple arguments, separated by commas.
b. Construction of arguments is defined by the particular
operation.
c. Tenninates with a blank, column 72, or a semicolon.

Comments Field (optional)

a. Starts with a slash (/) character.
b. Terminates with column 72 or semicolon.

The convention of this manual will be to limit label length to six
characters and to start the directive field in column 8. This is
done only for cosmetic purposes. The printout, or listing, of the
constructed procedure is easier to read; however, any spacing format
may be used as long as the above rules are followed. Cards must be

punched on an ~29 machine.

1-10

For example:

1 8 (columns)

TESTIT EXEC TURNON,5,SYSTEM,2.7 /SYSTEM TURNON

, . '--t--" I , ---J

label directive argument comments
field field field field

Formats are described in the following manner:

a. Any blank shown in the format requires at least one space
to be inserted in the statement (optionally use more spaces).

b. All literals, characters which must be typed just as they
are shown, are in upper case, e.g., EXEC.

c. All non-literals are in lower case. You must determine the
proper literal to insert after reading the remainder of the for
mat description test.

d. Optional arguments are shown encased in brackets, < > .

These arguments mayor may not be needed, depending on the leading
arguments. Their use can only be determined by reading the text
of the format description.

e. However, anything (blanks, literals, or non-literals) not
encased in brackets must be included in the statement.

The examples given for each directive will help illustrate that direc
tive's use and its options. More than one statement may be input on
a line if each statement is terminated by a semicolon. The EXEC

directive must be the final statement of a line if it is used in this
manner.

CRT KEYBOARD OPERATIONS

To input CCIl directives from the CRT keyboard, use the following

method:

a. Press the BREAK key to stop dynamic updates of the screen.

1-11

--------- --

b. Type in the required information.

c. Press the TRANSMIT key to transmit the typed-in information,
and also to allow the return of dynamic updates to the screen.

Several cautions are to be observed when using the CRT keyboard. Do
not press the BREAK key while a SNAP is in progress. Also, do not
allow long periods of time to elapse between pressing the BREAK key
and the TRANSMIT key, because a large backlog of accumulated update
information which is destined for that screen can cause system
operational problems. Know what you are going to type before you
press the BREAK key. If, after pressing the BREAK key, you change
your mind and do not wish to transmit information, clear the line and
press the TRANSMIT key anyway.

1-12

SECTION 2. CONSTANTS AND VARIABLES

SECTION 2. CONSTANTS AND VARIABLES

CONSTANTS

Constants are representations of data that cannot change in value. The com
mon conception of constants, being a number rather than a svmbol, is essen
tially correct but not sufficient for our purposes. CCIL constants may also
be a character string - a symbol. This type of constant is called text. To
the computer, constants are quantities that are used immediately in the
expression that the machine is presently executing and then they are lost.
A constant may not appear to the left of a CCIL assignment statement (refer
to section 3) except as a subscript.

Integer ·or Real

Again, the common concept of integer and real numbers is still a valid,

but somewhat insufficient, definition. An integer is a whole quantity

which has no fractional or decimal part, that is, no decimal point.
A real number has a decimal point regardless of whether any numbers
precede or follow the decimal point. Any variable stored in a field
defined as integer will be truncated to an integer number, while
variables sotred in a real field will retain their fractional parts.
CCIl calls the determination of real or integer numbers the deter
minations of 'type.'

2-1

Representation of Constants

Constant Tyoe Representation----'""'-
Hexidecimal Xla'

Examp 1e: XI 3F7 I where a = 1 to 8 hexidecimal digits,

0-9, A-F

Binary Bla'

Example: B'10111 where a = 1 to 32 binary digits, 0 or 1

Octal ()'a'

Example: 01735 1 where a = 1 to 11 octal digits, 0-7

Integer <+>a

Example: 2419 where a = decimal number less than

8 di gits

Floating <+>a.b

Example: -2.14132 where *a and b = any combination of up
to 14 decimal digits

Exponential Base 10 <+>a.bE<+>c

or Scientific

Example: 12.1E-99 where *a and b = any combination of up
to 14 decimal digits

c = decimal integer less
than 100

Character C 'a l

Example: C'AA' where a = any string of characters
except semicolon**

Text 'a'

Exampl e: I STOP I where a = any string of characters
except semicolon**, a text
string is not allowed in
an expression

*Either 'a' or 'b' can be missing. The decimal point is the critical
item.

**Two successive apostrophes are stored as a single apostrophe.

The optiona'i sign of a constant, <~, when not stated, defaults to a +.

2-2

VARIABLES

Variables, in relation to CCIl, refer to internal computer locations to which
the procedure writer or the system development group has given names. These
named locations can be referenced to store data; can be used in eauations to
generate new data to be placed in the same, or other, named locations; or
can be recalled for display on the printer or CRT. If variables have been
named by the systems development group then they are called global variables.
If they are named by the procedure writer they are called local variables.

Variables are typed as real or integer numbers similarly to constants.

Global Variables

Global variables always exist and can be referenced or used by any

procedure writer . There are three types of globals: command field
definition, telemetry items, and CCIl. The latest edition of Doc.
#733-76-001, IUE Telemetry and Command Users Manual, defines all
global variables. All telemetry globals, and some CCIl globals must
not appear to the left of the equal sign in an assignment statement,
meaning the procedure writer cannot alter their value.

local Variables

When the procedure writer wants to create new variables to use, called

local variables, the REAL and INTEGER directives may be used. Deter
mination must be made whether the variable's use will be for whole
numbers, INTEGER, or fractional or decimal numbers, REAL. If the

variable's permanent use in uncertain, make it REAL. Remember, how
ever, that any variable used for indexing, loop execution counting,
or as the argument of any jump (IF, GOTO), must be defined as INTEGER.

2-3

The name chosen for a local variable must follow these rules:

1. Start with alphabetic characters.
2. Be one to eight characters in length.
3. Contain only alphabetic characters or decimal digits.

Additionally, the local variable name may have to be unique. For infor
mation on th 'is detennination and on detennining the length of time a
local variable will exist, refer to the following sUbsection on environ
ments.

Passed Arguments

When bringing in a procedure or subroutine with the EXEC and CALL direc
tives, a string of up to eight arguments is allowed to be transferred.
The fonnat for each of the arguments can be any legal expression. This
means that a constant, a variable, or an equation may be used. What
actually gets passed is a value.

Argument Fonnat Contents of Passed Agruments

Constant Value of the constant

Variable Name Value of the variable name
at time of statement execution

Equation 	 Value of the equation, calculated
from values of its contents at time
of statement execution.

These values are stored in arrays called AF, for procedures, and ARG,
for subroutines. The arrays are accessed as AF(i) or ARG(i), 'i' being
one to eight. The arrays are defined to be only as large as needed.
If only three arguments on a CALL are used, then ARG(3) is the largest
value referenced. An ARG(4) reference would be illegal. Writing into

2-4

an array, if defined, is permissible and does not modify any of the
parameters used to generate the original value. Answers cannot be

returned to the calling routine, however, as the arrays are destroyed

at the RETURN statement.

Environment

Environment refers to a set of local variables and arguments that are

available to the executing code. The available set may change, how
ever, depending on whether a procedure or a subroutine is executing
and whether any internal references to other modules are made. Global

variables are a part of every environment because of their universal

availability. Refer to the definition of environments in table 2-1.

Procedures

A procedure can define a set of local variables and can be called with

arguments. This set, or environment, is kept unless another procedure

is executed from the set or the procedure executes an exit (RETURN).

The availability of the set is unaffected by subroutines; however, an

EXEC directive, which transfers control to another procedure, changes

the environment. If the environment changes, a new set of variables

and arguments are defined for a new procedure, which is also unaffected

by subroutines. There can be eight transfers of environments because

nested procedures, or internal references to other modules, may be
eight deep. Each time a procedure is referenced, the previous environ
ment is stored aside (variables are saved, procedure arguments are
lost) and a new environment is defined. As each procedure executes a
RETURN, the current set of variables is deleted and the prior set is

reinstated.

2-5

Table 2-1. Definition of Environments

~-------------------------,--------------------------------------~
Environment Definition

~--~~~~~------------~--------------------------------------~
Global variables
Own unique local variables

Single Statement Mode

Procedure Mode

Procedures
 Global variables

Own unique local variables

and arguments

Subroutines Global variables
Unique local variables and

arguments from calling
procedure (not subroutine)

Own unique local variables

and arguments

Suspended Procedure Mode
 Global variables
Local variables and arguments

defined when this mode entered

2-6

Local variable names used in a procedure cannot be defined if they
duplicate global variable names since global variables are always
available. A local variable may, however, be defined for one pro
cedure and still be unknown to any other procedures. This means
local variables in one procedure may not be referenced in another
procedure; yet, a local variable defined in one .procedure may have
the same name as a local variable defined in another procedure.

As previously stated, a procedure can define local variables and be

accompanied by up to eight arguments. The value, not the names, of
these arguments are stored in locations called the AF array. The
array may be accessed by AF(i), Ii I being any value between one and
eight. Eight arguments are available with each procedure executed
within another procedure, but when this is done the previous set of
arguments are lost and a new set inserted. When a RETURN is made,
the most recently defined set is kept.

To summarize, all procedures retain the set of variables which were
defined for the last procedure entered and the set of arguments which
were defined for the deepest nested procedure entered . Duplicate
names in separate procedures have no affect on the procedures. To
pass a local variable from one procedure to another, it must be
passed by value as an argument to the EXEC directive.

Subroutines

Subroutines can define their local variables and have their own argu

ment array called ARG, which is referenced by using ARG(i), I; I being

any value between one and eight. If a subroutine calls another sub
routine, the previous variables are stored and the previous arguments
lost. Each succeeding subroutine has no knowledge of the former

2-7

Table 2-2. Legal Local Variable Names

Module Type
Single Statement Mode

Procedure Mode
Procedures

Subroutines

Local Variable Names
Can be same as any name used in

any procedure or subroutine

Can be same as any name used in
Single Statement Mode.

Can be same in any name used in
any other procedure.

Can be same as any name used in
a subroutine that this procedure
doesn't call.

Cannot be the same as any name used
in a subroutine that this proce
dure does call.

Can be same as any name used in
Single Statement Mode.

Can be same as any name used in
any other subroutine.

Can be same as any name used in
a procedure that doesn't call
this subroutine.

Cannot be the same as any name used
in a procedure that does call this
subroutine.

2-8

environment. As subroutines RETURN, the current environment is deleted
and the previous environment reinstated (variables, not arguments),
indicating that duplicate variable names in separate subroutines are
never in effect concurrently, and are therefore acceptable.

A procedure must be executed to call a subroutine since a subroutine
cannot be called from a keyboard. The environment of that procedure

is still in effect for all subroutines referenced from within that
procedure. Therefore, local variables in a subroutine cannot be

defined with the same name of a local variable used in the procedure.
Subroutines are able to access the AF array and local variables of
the calling procedure as well as the ARG array and local variables of
the subroutine.

2-9

SECTION 3. ASSIGNMENTS

SECTION 3. ASSIGNMENTS

DECLARATION DIRECTIVES

All local variables (not global) must be defined as either INTEGER or REAL.

INTEGER or REAL also determines whether computer space allocated to the
variable is to be a single word or an array. The size of arrays should be
kept as small as possible. At definition, variables are initialized to a
value of zero. See page 2-1 for discussion of real and integer numbers,
page 2-3 for local variable restrictions.

INTEGER - Declare Integer Number

Description

The INTEGER directive defines the one or more variables that are
listed as arguments, as integer numbers.

Format
INTEGER a(x)<,b(y), ... ,n(z»
where a through n = names of local variables used in the procedure.

x through z = expressions evaluating to decimal integers ~ 255,
specifying the number of words to allocate for
the variable. If 'x' through 'z' = 1, use as optional.

Example
INTEGER SUMA(1),SUMB(1),TOTSUM(10)
INTEGER SUMA,SUMB,TOTSUM(10)
Defines the variables SUMA, SUMB,
SUMB are defined as scalar variabl

or

TOTSUM
es while TOTSUM

as integer numbers.
is defined

SUMA
as an

and

array of length 10.

3-1

REAL - Declare Real Number

Descriptio~

The REAL directive defines the

as arguments, as real numbers.

Format

REAL a(x)<,b(y), ... ,n(z»

one or more variables that are listed

where a through n = names of local variables used in the procedure.
and x through z = expressions evaluating to decimal integers ~ 255,

specifying the number of words to allocate for
the variable. If 'x' through IZ' = 1, use as optional.

Example
REAL ITEM(100),MODE(1) or
REAL ITEM(100),MODE
Defines the variables ITEM and MODE as real numbers. MODE is defined
as a scalar variable while ITEM is defined as an array of length 100.

EQV - Declare Equivalent Variable

Description
The EQV directive is used to equate two variable names as operationally
identical items. The utility of EQV is to alleviate the task of numerous
statement changes in a procedure. For instance, the name of a global
variable may be changed. Or perhaps two different spellings of a local
variable are used. Maybe two people contributed code to a procedure,
each using a different local variable name for the same physical variable.
All of these local variables can be equated without changing code, as
shown in the examples below.

Format
EQV a(x)<,b(Y), ... ,n(z»
where a through n = variable name that is presently undefined

x through z = variable name currently defined.

3-2

Example
Suppose a routine referencing the global FRMSYC was written and then
the true global name was changed to FMSYNC. To allow the code to run
without further modifications, insert the following:

EQV FRMSYC(FMSYNC) / PROC FRMSYC = GLOB FMSYNC

If there are two different names for a local variable in the procedure,
say TEMPI and TEMPA, correct the situation by declaring one or the
other to be type REAL or INTEGER and then equate the two names. It
doesn't matter which name is declared with the type directive. Either
of the following will work.
REAL TEMPA
EQV TEMPI(TEMPA)

or
REAL TEMPI
EQV TEMPA(TEMPI)

NEWSYM - Clear local Variable Table

Description
The NEWSYM directive clears (removes, deletes) all local variables, of
the console in which it is entered, which are defined for the current
level of execution. AF and ARG arrays are not effected.

Format
NEWSYM

ASSIGNMENTS

A CCIl assignment ;s the transfer of a value of an expression to a variable.

The transfer replaces the previous value associated with the variable. The
type of the expression value (real or integer) ;s converted to match the
variable type.

3-3

An assignment has the form:

a = b

where la' is a variable that will receive the calculated value of expression
Ib l . Multiple assignments, or combinations of assignments and directives,
may be made on a line if each statement is terminated by a semicolon. They
would have the form:
REAL C;C=D;CAll SUB10,C
where 10 1 is again an expression whose value will be placed in the variable
I CI •

An expression is any set of operations which culminates in a single value.
Among the CCIl items usable in expressions are:

Constants

Variables (global and local)

Functions

These items can be used as single items or can be combined with any of the

arithmetic, logical, or relational operators. The type assigned to the
result of an expression depends on the type of the items used in the expres

s ion. Once a REAL type is encountered, the expres s ion type cha nges to REAL,
and will stay REAL, regardless of subsequent types encountered.

Operations permitted within an expression are listed in table 3-1.

3-4

Table 3-1. CeIL Operators

level of
Precedence Operation

1. Functions

2. Unary +

-, or . NOT.
(-) takes 2's complement of integer portion, doesn't

change type
(I) takes lis complement of integer portion, doesn't

change type

3. Multiplication
Division

*
/

4. Addition
Subtraction

+

-
5. Relational

All generate an

.EQ. or = (equal)

.NE. or = (not equal)

.IT. or < (less than)

.GT. or > (greater than)

.lE. or <= (less than or equal)

.GE. or >= (greater than or
equa1)

integer answer; ~=false, -l=true

6. logi ca1 .AND. or &
.OR. or I

Generate the AND or inclusive OR, bit by bit, of
integer portions of the arguments- fractional parts
of arquments will be truncated .

. Within the same level, evaluation goes left to right. Level of precedence
can be overriden by use of parenthesis.

3-5

Some examples of valid expressions are:

A

5/2
AIX'F0 1

A.EQ.2.0R.A=3
A+3&(C+3)/2110
F(B+3*cIB ' 110 1)&B'100 1

FU N (R , S) I = --, FUN (S , R) 11

FUNCTIONS

NUM - Find Dimension

Description
The NUM function evaluates the argument name and returns an integer
number, which is the dimension or size of the variable used. A common
use is to obtain the number of arguments passed to a procedure or sub
routine using the variab~es AF and ARG, respectively. This value is
available to that procedure or subroutine for checking against the
number of arguments that are
NUM returns a zero.

expected. If the variable is undefined,

Format
NUM(a)
where a = any variable name

Example
SUBRTA SUBR

IF_NUM(ARG).EQ.5,+3
WAIT

RETURN

/
/
/

SUBROUTINE A REQUIRES 5 ARGS
CHECK ARGS
INCORRECT NUMBER Of ARGS, SUBRTA

CONTINUE

3-6

DEVICE - Find Redundant Unit Number

Description
The DEVICE function evaluates the argument name and returns an integer
number, which is the unit number of the redundant SIC subsystem that
the computer is presently addressing. Refer to the SW directive for
redundant unit selection. The most common use of the unit number will
be in camera subroutines where the telemetry variables are sets of arrays
containing different parameters for each camera.

Format

DEVICE(a)

where a = a subsystem name from the following list:

DMU, OBC, LVSW, FES, IRA, RW, EV, MECH, PAS, CAM.

Example

UN IT=DEV ICE(CAM) I GET CAMERA UNIT NUMBER

WAIT SCANBT(UNIT).EQ.0 I WAIT FOR SCAN COMPLETE

or

WAIT SCANBT(DEVICE(CAM)).EQ.0

RAW - Find Raw Telemetry Value

Description
The RAW function returns the unconverted telemetry count value for a
given telemetry point name. Normally, telemetry point values are con
verted to engineering units. For status points, RAW returns 0 for
Inot set l and 1 for Iset.1 Converted values are 0 and -1, respectively.

Format

RAW(a)

where a = global variable name for telemetry point

Example

A=RAW(TLMVAL)/2+3

3-7

ALRMHI 	 - Find Telemetry High Alarm

Description
The ALRMHI function returns the data base value which, when exceeded
in a positive direction, generates a high alarm indication for the
given telemetry point (global variable) name used as argument.

Format

ALRMHI(a)

where a = global variable name for telemetry point

Example

DISPLAY ALRMHI(TLMVAL)

ALRMLO 	 - Find Telemetry Low Alarm

Description
The ALRMLO function returns the data base value which, when exceeded
in a negative direction, generates a low alarm indication for the
given telemetry point (global variable) name used as an argument.

Format

ALRMLO(a)

where a = global variable name for telemetry point.

Example
IF TLMVAL-ALRMLO(TLMVAL)<0.1*ALRMLO(TLMVAL),ALRMCK

/ CHECK STATUS IF TLM WITHIN 10% OF ALARM

STATIC 	 - Test for Static Telemetry

Description
The STATIC function returns a true/false value that tells whether a
specified telemetry value is static or dynamic. The returned value is
an integer of -1 (true) if the telemetry point is static, or, 0 (false)
if the telemetry point is dynamic, or updating.

3-8

Format

STATIC (a)

where a = any valid telemetry name.

Example

IF .NOT.STATIC(DATSYSl)&.NOT.STATIC(DATSYS2)

WAIT /DATA SYS TLM NOT UPDATING

ABS - Convert to Absolute Value

Description
The ABS function evaluates an expression for its absolute value and is
typed (REAL or INTEGER) the same as that of the expression.

Format

ABS(a)

where a = any legal expression.

Example

NEW=ABS(A&B/C)

HEX - Convert Integer to Hexadecimal

Description
The HEX function returns a character string that is the hexadecimal
representation of the integer portion of the argument. The HEX function
is most useful as an argument to the DISPLAY function.

Format

HEX(a)

where a = any legal expression.

Example

assume X=3, Y=8, Z=2.

DISPLAY HEX(X*Y/Z) / WILL DISPLAY IC'

3-9

UNSPEC - Convert Characters to Hexadecimal

Description
The UNSPEC function returns a character string that is the hexadecimal
equivalent of the expression in floating point representation.

Format

UNSPEC(a)

where a = any legal expression.

Example

DISPLAY UNSPEC(4) DISPLAYS 41400000

MOD - Compute Modulus

Description
This directive returns the remainder of the quotient obtained by dividing
the integer portion of expression la l by the integer portion of expres
s i on lb. I

Format

MOD(a,b)

where a = an expression used as dividend.

b = an expression used as devisor.

Example
DISPLAY MOD(237.6,33.3) / DISPLAYS 6 (237/33=7 REM 6)

BIT - Converts Bits to Decimal

Description
The BIT function evaluates a string of expressions each of which evaluates
to a value from 1 through 32, indicating a bit to be set. Bits are num
bered from right to left in the word. Up to 32 expressions may be used as
arguments to the function.

3-10

Format

BIT (a< , b , ... , z>)

where a, ... ,z = any legal expression.

Example

A=BIT(5,1) / CREATES WORD WITH BITS 1 AND 5 SET.

PPRNUM 	 - Find Data Base Record PPR Number

Description
The PPRNUM function returns an integer corresponding to the PPR number
of a named data base record.

Format
PPRNUM(a<,b»
where a = name assigned to the PPR

b = name assigned to the PPR group - if Ib l is not present,
the telemetry group (DFTTLM) is assumed.

Example

DISPLAY PPRNUM(DATSYS1) / DISPLAYS 1347

DISPLAY PPRNUM(FES1,DFESPHYS) / DISPLAYS 7211

3-11

SECTION 4. CONTROL DIRECTIVES

SECTION 4. CONTROL DIRECTIVES

ALL MODES

Comments

Description
Comments are any nonexecutable text, that is, information to the operator
rather than directives to the computer. The CCIL format allows comments
to be placed on the end of an executable statement. The comment field
must be preceded by a minimum of one blank space to terminate the pre
vious field. A slash (j) character starts the comment by informing the
computer that the remaining data is nonexecutable. Data within the
comment field, the text, may use any alphanumeric or special character
except the semicolon (;). The semicolon serves as a statement terminator,
so any data after the semicolon will be interpreted as a new statement.

If there is no executable statement on the input, whether input is a
card or from the CRT keyboard, the slash (/) may be placed in any column
from 1 to 72. Additionally, if the total input is to be a comment, an
asterisk (*) may be used, but in column one only. Since CRT input effec
tively starts at column 2, the type of cOlllment is illegal from the CRT
keyboards. Blank comment cards, with an asterisk in column one, can
be used as spacers when writing a procedure.

Either type of comment is printed and displayed in the same manner as
an executable statement. Comments are counted when determining the
destination of the +n type of jumps (IF and GOTO).

Example
WAIT / COMMENT AT END OF EXECUTABLE STATEMENT
/ COMMENT WITHOUT EXECUTABLE STATEMENT

/ COMMENT STARTING IN COLUMN ONE

*
* COMMENT STARTING IN COLUMN ONE

*

4-1

EXEC - Start Procedure Execution

Description
The EXEC directive causes execution of a pre-defined set of statements
specifically structured to be a procedure, which is stored on the cur
rent procedures file. Up to eight arguments can be passed to the proce
dure. The procedure may use and modify these arguments, referencing
them as AF(i), but their existence is deleted on return to the calling
environment. A procedure may contain an EXEC function of its own, and
may process up to eight internal referenced EXEC functions in a proce
dure. That is, a procedure may execute a second procedure, which in
turn executes a third procedure. Reference should be made to the pre
ceding discussion on procedures for information on the handling of
arguments in nested procedures.

Format
EXEC y<,a1,a2, ... ,a8>

where y = a label (procedure name) that exists on the procedure file
that has a PROC as its directive.

each a1, ... ,a8 = a constant, variable, or expression passed as an
argument to the procedure.

Example
EXEC SYSAON,5,TIME,3.2,VECT(3)
Requests a procedure named SYSAON to be run. Passes 4 arguments AF(1)=5,
AF(2)=TIME, AF(3)=3.2, AF(4)=VECT(3). The SYSAON procedure will reference
these arguments as AF(i).

EXEC SYSAOFF
Requests a procedure named SYSAOFF to be run. No arguments are passed.
Therefore, AF(i) is undefined for all values of Ii. I

4-2

EXEC TEST1,C 1 INITI ,3,A-B*C,CLOCK,VECT(3) ,D&C,A>l
Requests a procedure named TEST1 to be run. The argument list shows
some of the various forms that can be used: alphanumeric characters,
constants, mathematical expressions, single value variables, dimensioned
variables, logical expressions, and relational expressions.

STEP - Select Procedure Execution Speed

Description
The STEP directive controls the speed of execution of a procedure. In

single-step, a hold is effectively inserted between each procedure
statement. A GO statement is then required to be input from the key
board to execute each statement. The value of STEP is passed from
mode to mode as part of the environment. That is, establishing single
step in single-statement mode will cause single-step to be in effect
when a procedure is executed out of single-statement mode. A second
procedure executed from the fi rst will sti 11 be in si ngl e-step. If

the second procedure changes to continuous-execution, this condition
will remain in effect until control is passed back to procedure one.
Then the condition reverts to single-step. The same explanation holds
for a subroutine called from procedure-one.

Format

STEP a

where a = an expression which evaluates to ~ or non-zero.

= ~

for continuous-execution or,

= non-zero

for single-step.

4-3

Example

STEP 1

Selects single-step mode. Speed of procedure execution dependent on

operator's typing of GO in between each procedure statement.

STEP 0

Selects continuous-execution mode. Speed of procedure execution depen

dent only on computer processing time.

PROCEDURE ONLY

PROC - Define Procedure Entry Point

Description

The PROC directive defines an allowable procedure entry point (label)

that may be referenced by an EXEC function. Procedures can have only

one entry poi nt.

Format

PROC

Example

See combined example following PEND directive.

SUBR - Define Subroutine Entry Point

Description

The SUBR directive defines an allowable subroutine entry point (label)

that may be referenced by a CALL function. Subroutines can have only

one entry point.

Fonnat

SUBR

Example

See combined example following PEND directive.

4-4

PEND - Define Procedure or Subroutine Physical Termination Point

Description
The PEND directive defines the physical end (last card) of the card
deck used to generate a procedure or subroutine. If executed, the
PEND directive functions as a RETURN directive.

Format

PEND

Example

TESTA PROC / START TESTA

CALL MODA / CALL SUBROUTINE

RETURN / EXIT FROM PROCEDURE
PEND / TERMINATE PROCEDURE DECK

MODA SUBR / START MODA

RETURN / EXIST FROM SUBROUTINE
PEND / TERMINATE SUBROUTINE DECK

RETURN - Return From Subroutine or Procedure

Description
The RETURN directive causes the subroutine or procedure to return
control to the calling unit. Each subroutine and procedure should
contain at least one RETURN directive. Multiple RETURN's may be used.
The current environment is deleted and the calling environment is
restored.

Format

RETURN

Example

See combined example following PEND directive.

4-5

~--------------~----------~-----

CALL - Start Subroutine Execution

Description
The CALL directive causes execution of a pre-defined set of statements,
specifically structured to be a subroutine, which is stored on the
current procedures file. Up to eight arguments can be passed to the
subroutine. The subroutine may use and modify these arguments, refer
encing them as ARG(i), but their existence is deleted on return to the
calling routine. You may process up to eight "nested ll CALL functions.
That is, a subroutine may call a second subroutine, which in turn calls
a third subroutine. Reference should be made to the preceding discussion
of subroutines for information on the handling of arguments in nested
subroutines.

Format
CALL y<,a1,a2,·· .,a8>

where y = a label (subroutine name) that exists on the procedure file
that has a SUBR as its directive.

each a1, ... ,a8 = a constant, variable, or expression passed as
an argument to the subroutine.

Example
CALL CAMIXl,TIME,NUMB(4),15
Requests a subroutine named CAMIXI to be run. Passes three arguments
ARG(l)=TIME, ARG(2)=NUMB(4), ARG(3)=15.
The CAMIXI subroutine will reference these arguments as ARG(i).

CALL CAMIOF
Requests a subroutine named CAMIOF to be run. No arguments are
passed.
Therefore, ARG(i) is undefined for all values of Ii. I

4-6

CONTINUE - Do Nothing

Description
The CONTINUE directive is used primarily as a place holder in procedures.
It is also commonly used as the cycle instruction of a DO loop. An implied
CONTINUE, or do-nothing, directive is formed by constructing a statement
without any directive. This might be a statement with only a label, or
a label and a comment, or simply a comment.

Format

CONTINUE

/ COMMENT

LABEL

LABEL / COMMENT

Example

See combined example following the DO directive.

GOTO - Jump

Description
The GOTO directive causes the execution of the procedure or subroutine
to jump from its present position to a new specified position. You may
only jump to positions that are still within the body of the currently
executing procedure or subroutine. The GOTO directive cannot be used
as the cycle instruction of a DO loop.

Format

GOTO a

where a = either:

= the name of a label in the procedure or subroutine to which
the execution should be transferred, or;

=an expression evaluating to +n, n being an integer number
of statements (see note below) to skip.

4-7

l'

Example

GOTO PARTB / JUMP TO PARTB

(MISC 	 PROCEDURE)

PARTB 	 CONTINUE
GOTO -5 / JUMP BACKWARDS 5 STATEMENTS

Note: 	 GOTO's using the +n argument should be used with caution. The
number of statements should be kept small so that their range can
easily be seen and modified when editing procedures. The num
ber of statements skipped will include comment cards. Remember
that a multiple assign card counts as multiple statements.

IF - Test Conditions

Description
The IF directive provides the capability of testing the value of
selected variables for the purpose of decision making. It can be
used, for example, for limit testing, for determining options
within a procedure, or for testing external conditions relating
to procedure operation.

The expression ;s evaluated and assigned the value 'true' (-1) or
'false' (zero). If the expression is true, the procedure will jump
to a new location determined by the final argument field. The new
location can be either a label, plus or minus a specified number
of statements, or, if there is no argument following the expression, plus
two statemE!nts (a skip of one statement). If the expression ;s false, the
procedure will continue with the next sequential statement. Jumps
using the +n argument need to be used with the same caution as GOT06.

4-8

Refer to the note in the GOTO-Jump procedure. In either case, a jump
to a label or a jump of ~n statements, the jump must remain within the
body of the currently executing module.

Format

IF a<,b>

where a = logical expression, simple or compound.

b = procedure destination if expression la' is true, in one of
the following forms:

= blank - skip one statement
= an expression evaluating to +n - jump forward or backwards

n statements
= label - jump to statement having this label.

Example
IF IMODE.EQ.4,MODE4 / IF IMODE=4,GO TO LABEL MODE4,

*ELSE GO TO NEXT SEQ STATEMENT
IF A.LT.2.1.0R.A.GT.2.9,NOGOOD / IF A IS EITHER LESS THAN 2.1 OR

*GREATER THAN 2.9, GO TO LABEL NOGOOD. ELSE GO TO NEXT SEQ STATEMENT.
IF NEW.NE.OLD,+3 / IF NEW IS DIFFERENT FROM OLD, JUMP 3

*STATEMENT, ELSE GO TO NEXT SEQ STATEMENT.
IF A.EQ.B.AND.A.EQ.C / IF A=B=C SKIP ONE STATEMENT, ELSE GO

*TO NEXT SEQ STATEMENT.

WAIT - Wait For Conditions

Description
The WAIT directive causes a temporary or unconditional suspension of the
module until the conditions of the WAIT are met. There are four forms
of WAIT, one for unconditional, one for specified time, and two for a
condition coupled with a maximum time, one of which also having a cycle
rate specified for testing the condition. If the maximum time to wait
for a condition is exceeded, the system notifies the operator and enters
a HOLD state.

4-9

Format
WAIT
which is an unconditional wait, really a HOLD, and must be answered
with a GO
or
WAIT a
where a = an expression evaluating to a decimal constant specifying

number of seconds to wait before proceeding
or
WAIT x,y
where x = an expression (condition) to be evaluated as true (non-zero)

before proceeding
y = an expression evaluating to a decimal constant specifying

number of seconds, a value used as the maximum time to wait
regardless of whether condition IXI is true.

or

WAIT x,y,z

where x and y = same as the format for WAIT x,y.

z = period of time, in seconds, between evaluations of
IX. I If IZI is not specified, default is to a 0.
One-second evaluation cycle.

Example
WAIT 5.5 I WAIT 5.5 SECONDS
WAIT SC28V.GT.26,120 I WAIT FOR 28V ON OR 120 SECONDS
WAIT SC28V.GT.26,120,15.0 I SAME AS ABOVE, EXCEPT EVALUATION
*CYCLE IS 15 SECONDS INSTEAD OF 0.1 SECONDS.
WAIT I END TEST, CHECK SIC

DO - Start Loop Execution

Descriptio~

The DO directive instructs the procedure to execute a specified sequence
of statements in a cycle for a specified number of times. The sequence

4-10

begins with the statement following the DO statement and ends with the
statement on which a particular label is defined. This 'label statement '
must physically follow the DO statement. Historically, the 'label state
ment ' has also been a CONTINUE directive for compatibility with PCl.
The actual limitations for CCIl are that a DO loop must not end with a
'GOTO ' action, that being either a GOTO or an IF directive. Nesting DO
loops, that is, a DO loop within a DO loop, is allowed. The nested DO
loop must be totally contained within the previous loop, however. See
the example below. Code in a procedure, which branches into a loop,
is acceptable. Note, though, that since the DO directive will not
have been executed, the execution of the statement containing the
termination label will have no meaning and the procedure will never
loop, but will always continue in sequential operations.

A review of the following format paragraph will clarify the remainder
of this paragraph. One item of interest is the value of the loop
counter 'i' at loop completion. As stated in the following paragraph,
loop completion is made when the count variablE~ 'i' exceeds the value
of the terminating variable In'. The specific action at the label
statement is this: Increment 'i' by 'p'; test ' i' greater than 'm';
loop if not greater, exit if greater. Obviously, since the test is
made at the end of the loop, not at the beginning, the sequence will
always be performed once. This also means that the DO loop ending with
label SUB102 will execute three times, but 'i' will have a value of
four at loop completion (refer to the example in the following para
graph). A related fact is that the 'i ' in the loop may be modified.
loop exiting will still be accomplished whenever 'i I exceeds 'm' . One
may also branch out of a loop without waiting for the prescribed number
of loop cycles. The loop counter 'i' will continue to have whatever
value it had when the branch was made. Finally, while 'i' may be
modified, 'm', 'n', or 'pl should not be changed within the loop.

4-11

Fonnat
DO a i=m,n<,p>
where a = name of labe~ which terminates the loop, which must not prefice

a GOTO or IF directive.
i = name of an integer variable used to count loop cycles.
m = an expression which evaluates to a positive or negative integer

to which 	 IiI is initially set.
n = an expression which evaluates to a positive or negative integer

specifying a value of IiI which, when exceeded, will terminate
the cycling.

p = optionally, an expression which evaluates to a positive integer
whose value is added to 1;1 each pass through label la l . If
Ipl ;s not specified, Ii' will increment by 1.

Example
SUB101 	 CONTINUE / USED AS PLACE HOLDER

DO SUB102 1=1,3 / CYCLE 3 TIMES
:EV / PULSE JETS
WAIT 30 / WAIT 30 SECONDS
SNAP ENGVAL / DOCUMENT

SUB102 CONTINUE
JEN=0 / DISABLE

*TWO EXAMPLES OF LEGAL NESTED LOOPS
DO SUB205 1=-6,0,2 / CYCLE 3 TIMES

DO SUB204 1=-2,0 / CYCLE 2 TIMES

SUB204 CONTINUE
SUB205 CONTINUE

4-12

DO SUB21~ I=-6,~,2 / CYCLE 3 TIMES

DO SUB21~ I=-2,~ / CYCLE 2 TIMES

SUB21~ CONTINUE

HOLD - Suspend Procedure Execution

Description

The HOLD directive is normally issued from the keyboard during procedure

execution and its effect is to suspend the execution of the active pro

cedure. If no argument is used, the procedure will halt at conclusion

of the processing of the present statement. If an argument is specified,

the procedure will halt when that statement of the procedure is accessed,

but before execution of the statement. The HOLD largument l condition is

referenced to the current environment and will be deleted on exiting

a module.

Format

HOLD <a>

where a = any valid label or statement number (including comment).

Example

Refer to the combined example following the GO directive.

4-13

PROCEDURE AND SUSPENDED PROCEDURE

ABORT - Terminate Procedure Execution

Description
The ABORT directive unconditionally terminates the execution of an active
procedure and returns system to the single-statement, or keyboard, mode.

If the ABORT is requested from the keyboard and an action has been
initiated by the procedure, that action will be completed normally before
procedure termination, with the exception of the WAIT directive. Any
WAIT directive will be cancelled immediately by the ABORT. The optional

character string is not processed any differently than the normal com
ment field in CCIL.

Note that ABORT is not the equivalent of RETURN. RETURN will cause
an exit from the present environment and a restoration of the previous
environment. By the nesting of EXEC and CALL directives, the procedure
may be several stages deep in previous environments. ABORT exits all
procedure-type environments and returns to single-statement mode.

Format

ABORT <'optional character string ' >

GLBABORT - Terminate All Procedures

Description
The GLBABORT directive is the equivalent of ABORT except it acts on a
system, rather than single-keyboard, scale. Any procedures, executing
from any console, will be terminated.

Format

GLBABORT

4-14

SUSPENDED PROCEDURE ONLY

GO - Resume Procedure Execution

Description
The GO directive resumes execution of a suspended procedure. If no
argument is used, procedure will resume at next sequential statement.
If an argument is specified, the procedure will jump to the start of
the statement that is specified and then resume execution. The requested
statement must reside within the body of the currently executing module.
This function is legal from keyboard only.

Format
GO <a>

where a = any valid label or statement number within the body of pre
sent module. Only one argument is allowed. Statement number
can be a comment record.

Example
Suppose a portion of a procedure looked this this:
112 TEST06 ISA=511
113 ILA=511
114 SSR=0
115 LSR=0
116 CMD022 :SCAN
(rest of procedure)
538 TEST07 ISA=1023
539 ILA=1023
540 SSR=1023
541 LSR=1023
542 WAIT / OPTIONAL CMD USED - DETERMINE PROPER ACTION

As the procedure was running, suppose a command should not be executed
at statement 116 with the options given it in the proceeding statements

112-115. Instead the options in statements 538-541 should be given.

4-15

--------~-----=-------

From
func

the keyboard,
tionally equivalent

before statement 116
statements:

is reached, issue either of the

HOLD 116
or
HOLD CMD022

The procedure will then be suspended as statement 116 is accessed, but
before its execution. Now, from the keyboard, issue either of the func
tionally equivalent statements:

GO 538

or
GO TEST07

The procedure will resume execution by jumping to statement 538. The
new options will be set and the procedure will pause (stop) at state
ment 542. Now, from the keyboard, issue either of the functionally
equivalent statements:

GO 116
or
GO CMD022

The procedure resumes execution by jumping to statement 116, issues
the scan command, and continues through the procedure.

4-16

SECTION 5. COMMAND DIRECTIVES

SECTION 5. COMMAND DIRECTIVES

Commanding is done by transferring a 60-bit string of information to the

spacecraft. These 60 bits consist of segments of data which are set by CCIl
directives. For serial commands there are three primary fields.

First, there are 8 bits which specify the command decoder address. The
spacecraft receiver directs the command to one of the two command decoders,
based on this value. The value is set by CCIl using the SET DECODER direc
tive.

Secondly, there are 6 bits which specify the command address. Each piece

of spacecraft hardware has a unique address. This address is set by CCIl

using the SW directive. For example, issuing SW FES,l will cause the
number 39 (serial command address number) to be placed in the command field

(if a :FES is issued). When the spacecraft command decoder decodes the data,
it will send the information to FES1 (39) rather than FES2 (47) or any other
piece of hardware.

Finally, there is a 37-bit field which is built by combining the values of

one or more global command variables assigned to each type of command.

Sending a command, by using the :command directive (assume :FES), causes the
computer to transfer the contents of the variables for FES global variables,
the FES SW setting, and the SET DECODER setting to a command buffer, along
with some other information. The resulting 60 bits is then transmitted to
the spacecraft. This generation is shown pictorially in figure 5-1.

5-1

~ 64 command lines

8
}ecodes
bits for

lecoder

SIC
RX

DECODER
1

DECODER
2

6 bits for
command line

39 FES 1

47

39 FES 2

47

TX

U1
I

N

k 60 BITS · ~ -
37 BITS

DD·.. D
COMMAND GLOBAL SW SET DECODER

VARIABLES SETTING SETTING

Fi gure 5-1. Cor nd Generati on

Setting the variables associated with commands is accomplished in several
ways. The most universal way is to use the assign routine (Variable=x) to
set proper values into the command variable before actually calling the
command. A second way is to set the variables in the same statement as the
issuance of the command. A third method of commanding is to follow, on the
same line (in the same record, CCIl), with a string of arguments.

Specific commands use one or more of the above methods. The various methods
of commanding, and the groups of commands using these methods, are illus
trated following the discussion of command handling directives.

Once set, the variables are constant and do not have to be reset. The varia
bles should be initialized in each procedure. Either individually assign a
value to each one or execute a procedure that you know assigns values to all
command variables. The EXAMINE SERIAL directive will display these values.
Do not issue commands without knowing what is in all variables which define
the total impact of that command. Although it does not ensure proper command
fabrication, command variables are checked against an internal table of
allowable values at the time a command transmission ;s requested.

Capabilities have been provided for creating and executing a buffer of com
mands (a command sequence) so that time-critical commanding can be performed.
There will be two CRT pages which will display the contents of this buffer.

5-3

COMMAND HANDLING

SET DECODER - Format Commands for Redundant Encoder Selection (CCIl Unigue)

Description
The SET DECODER directive is used to direct the construction, and
therefore the transmission of commands to one of the two space
craft command decoders. Specifically, it directs the computer to
format all subsequent commands with a particular number in the
decoder address field (bits 1 to 8) of the command. The SET DECODER
directive should not be issued while commands are being uplinked
to the spacecraft.

Format

SET DECODER,a

where a = an expression that evaluates to 1 or 2;

meaning the selection of redundant command decoder
1 or 2.

Example
SET DECODER,l I FORMAT CMOS FOR DECODER 1

SW - Format Commands for Redundant Unit Selection

Description
The SW directive is used to direct the construction, and there
fore the transmission of commands to a particular piece of
redundant spacecraft hardware. More precisely, part of its func
tion is to specify the ground formatting of a particular portion
of the command field. This field, the serial command address
(bits 1~ to 15), is eventually used by the IUE spacecraft's
command decoder to direct the command to the proper redundant
device. SW also directs the computer to use a particular group

5-4

of command variables in the generation of the serial data for
the command. Finally, SW directs the computer to have all
further assignments of data to non-subscripted command variables
to be assigned to the group associated with the redundant unit
selected. Values may still be assigned to nonselected units by
subscripting the variable.

Format
SW a,n
where a = anyone of the following sUbsystems:

DMU (Data Multiplexer Unit)
aBC (On-Board Computer)
LVSW (Low Voltage Switch)
FES (Fine Error Sensor)
IRA (Inertial Reference Assembly)
RW (Reaction Wheel)
EV (Engine/Valve)
MECH (EEA Mechanism)
PAS (Panoramic Scanner)
CAM (Camera)

and where n = an integer expression equating to 1 or 2;
meaning the selection of either redundant
unit 1 or 2, except for subsystem CAM, where-

n = an integer expression equating to 1, 2, 3, or 4;
meaning the selection of one of the 4 redundant
units.

5-5

Example
INTEGER UNIT
UNIT=2
SW DMU,l / SWITCH TO DMU 1
SRATE=1 / SRATE(1)=1, 40kb
SRATE(2)=2 / SRATE(2)=2, 20kb
:DMU / USING ARRAY(1) AND SERIAL COMMAND

/ ADDRESS 6, BUILD AND TRANSMIT CMD, 40kb
SW DMU,UNIT / SWITCH TO DMU 2
SRATE=0 / SRATE(2)=0, 80KB
:DMU / USING ARRAY(2) AND SERIAL COMMAND

/ ADDRESS 14, BUILD AND TRANSMIT CMD

EXAMINE SERIAL - Display Command Parameters (CCIL Unigue)

Description
The EXAMINE SERIAL directive displays the SW setting, being the
redundant device selected, and all command variables associated
with the requested command, including those for non-selected
redundant units. The information is output to the event printer
and to the requesting CRT. If a reference is going to be to the
CRT, the DBASEB page should be displayed prior to issuing the
EXAMINE SERIAL directive. The system doesn1t stop to allow a review
of the data, so a WAIT should be inserted to verify the configuration.

Format
EXAMINE SERIAL,a
where a = anyone of the following:

DMU (Data Multiplexer Unit)
EV (Engine/Valve)
FES (Fine Error Sensor)
MECH (EEA Focus)
IRA (Internal Reference Assembly)

5-6

PRECESS (Precession and Nutation)
PAS (Panoramic Scanner)
RW (Reaction Wheel)
SCAN (SSCL Scan)
SIHTR (SSCL Camera Setup)
SIALGN (SSCL Camera Setup)
SIUVC (SSCL Camera Setup)
SIMODE (SSCL Camera Mode)

Example
EXAMINE SERIAL,DMU / DISPLAY DMU CMD PARAMETERS

SET TRANSMIT - Select Command Transmission Mode (CCIL Unique)

Description
The SET TRANSMIT directive specifies the command transmission mode.

Format
SET TRANSM IT ,a
where a = either:

= SINGLE
for transmit (and verify) commands one at a time, or;

= MULTIPLE
for transmit (and verify) commands norma lly.

Example
SET TRANSMIT,SINGLE / TRANSMIT COMMANDS ONE AT A TIME

SET CMDMODE - Select Command Ground-Transmission Path (CCIL Unique)

Description
The SET CMDMODE directive selects the ground path taken for com
mand transmissions.

5-7

Format

SET CMDMODE,a

where a = either:

= CMDENC
for command transmission through the command encoder,
meaning direct link to the transmitter, or;

= DOPS
for command transmission through the NASA link to a
remote site (SCE).

Example
SET Cr~OMOOE ,CMOENC / SET UP FOR DIRECT COMMANDING

SET VERIFY - Select Verification Mode (CCIl Unique)

Oescri pti on.

The SET VERIFY directive specifies the type of command transmission

verification to be performed.

Format

SET VERIFY,a<,b>

where a = OFF

for no verification is performed, or;

where a,b = one or both of:

= OCC
for verification is performed by control center
software, or;

= SCE
for verifi cati on is performed by Spacecraft Command
Encoder (SCE) site software.

5-8

OCC and SCE verification may be requested together. The OCC
verification has precedence over the SCE verification. The
format of this request is as follows:

SET VERIFY,OCC,SCE

REPLY CMD - Process Command Requests (CCIL Unique)

Description
The REPLY CMD directive ;s used to respond to one of two types of
messages from the commanding portion of CCIL. One, before a command
;s transmitted, it is compared with the table of critical commands.
If the desired command is critical, the following message is displayed.

CRITICAL - message - description (nn)
where message = reason for command being critical.

description = command description.
nn = command position ;n command display.

Secondly, if a command transmission fails, one of the following
messages is displayed.

TELECOMMUNICATIONS RESPONSE TIMEOUT

COMMAND UPLINK FAILURE

VERIFICATION FAILURE

TELEMETRY TIMEOUT DURING COMMANDING - CA

COUNTER UNSTABLE PRIOR TO COMMANDING - CB

COUNTER OUTSIDE OF LIMITS - CD

VERIFICATION FAILURE - CE

NO TELEMETRY AT START OF COMMANDING - CF

DECODER OFF - CH

DECODER UNSTABLE PRIOR TO COMMANDING - CI

In any of these cases, no further command processing is done until the
REPLY CMD directive is issued.

5-9

Format
REPLY CMD,a
where a = either:

= SKIP
for skip transmission or retransmission of this command.

= CLEAR
for skip transmission or retransmission of this command and
clear entire command buffer (not necessarily iust command
displayed).

= APPROVE
for transmission of critical command.

= RETRANS
for retransmission of failed command.

Example
REPLY CMD,CLEAR / CLEAR ALL CMDS IN CMD BUFFER

NORMAL SERIAL COMMANDS

The following set of commands can be sent with their respective variables

set either:
1. before the command is executed, that, is on separate lines

either singly or in multiple assigns, or

2. on the same line (record, CCIL) as the command, either singly
or in multiple assigns with each assign separated by a comma.

Note that in method (1) the multiple assigns are separated by semicolons, not
commas. While this is one line for PCL, it is multiple records for CCIL.
Some examples follow:

5-10

Setting single variables before command:

XVAM=@
:DMU
ISA=128
ILA=128
SSR=128
LSR=128
:SCAN

/ ENABLE 11-1 VAM
/ TRANSMIT

/ SET PARAMETERS
/ START SCAN

Setting multiple variables before command:

ISA=128;ILA=128;SSR=128;LSR=128

:SCAN

Setting variable on line with command:

:DMU XVAM=~ / ENABLE TM VAM

:SCAN ISA=128,ILA=128,SSR=128,LSR=128

In addition to the three totally distinct methods shown, the many
combinations of the three methods are all equally legal. Such as:

ISA=128
ILA=128;SSR=128
:SCAN LSR=128

:DMU - Data Multiplexer Unit

Description
Commands the Data Multiplexer Unit (DMU). Selection of one of two
redundant sets of variables and command paths is accomplished by
issuing the SW DMU,a directive. The values of the two variable

5-11

sets and the SW setting are displayed by issuing the EXAMINE SERIAL,DMU
directive.
NAME
IA1
IA2
XVAM

XCLK

AROM

CFMT

TFMT

TMROM

CODED

MXR

Variables used to generate the :DMU command
USE

Indirect Address, Number 1
Indirect Address, Number 2
o = Cycle T/M VAM and Load

aBC VAM
1 = Cycle OBC VAM and load

T/M VAM
o = Redundant Clock
1 = Main Clock
o= Single Address Format
1 = Alternate Format (not used

on IUE)
o = Direct Computer Format
1 = Nap
2 = aBC VAM Computer Format
3 = ROM Computer Format
o= VAM Telemetry Format
1 = ROM Telemetry Format
o= 1A Transfer Orbit
1 = 2A Mission
2 = 1B SI Video
3 = 2B OBC Memory
o = Block Code (uncoded)
1 = Convolutional (coded)
Multiplex Ratio:
o = All Telemetry

1 = 1:1

2 = 2:1

3 = 4:1

4 = 8:1

5 = 16:1

6 = 32:1

are:
MIN/MAX

0/15
0/15

0/1

0/1

0/3

0/1

0/3

91/1

0/6

5-12

NAME USE MIN/MAX

SRATE Transfer Ratio: 0/5

0 = 80KB

1 = 40KB

2 = 20KB

3 = 10KB

4 = 5KB

5 = 2.5KB

:EV - En9ine/Valve

Description
Commands the engine and valves. Selection of one of two redundant
sets of variables and command paths is accomplished by issuing the

SW EV,a directive. The values of the two variable sets and of the SW
setting are displayed by issuing the EXAMINE SERIAL,EV directive. Vari
ables used to generate the :EV command are:
NAME USE MIN/MAX
LPUL Low Thrust Engine Mode: 0/1

o= Continuous
1 = Pulse

PHASE Accelerometer Phase: 0/1
o= Non-Invert
1 = Invert

ACC Accelerometer Select: 0/1
o = Accelerometer 1
1 = Accelerometer 2

EVC Mode Control: 0/1
o = Secondary Mode Control
1 = Primary Mode Control

HPUL High Thrust Engine Mode

o = Continuous

1 = Pulse

5-13

NAME 	 USE MIN/MAX
VALVE 	 One bit per valve* with the MSB 0/127

being valve 1 and LSB being
valve 7:
o = Closed Valve
1 = Open Valve

ENG 	 One bit per engine** with the MSB 0/4095
being engine 1 and the LSB being
engine 12:
o = Disable Engine
1 = Enable Engine

EVE E/V Enable: 0/1
o = Disable bits 1 to 24 of

this command
1 = Enable bits 1 to 24 of

this command
FIRE 	 One bit per engine** with engine 1 0/4095

being the MSB and engine 12 being
the LSB:
o = Engine Shutdown
1 = Engine Fire

*VALVE can be set with constants VI through V7 for valves

1 through 7.

**ENG and FIRE can be set with constats Jl through J12 for iets
1 through 12.
Example:

VALVE = V2+V4+V7 / OPEN VALVES 2,4,AND 7
ENG = Jl+JI2;FIRE =Jl+JI2 / ENABLE AND FIRE ENGINES 1 AND 12

5-14

:FES - Fine Error Sensor

Description
Commands the Fine Error Sensor. Selection of one of two redundant
sets of variables and command paths is accomplished by issuing the
SW FES,a directive. The values of the two variable sets and of the SW
setting are displayed by issuing the EXAMINE SERIAL,FES directive.
Variables used to generate the :FES command are:
NAME USE MIN/"1AX
FESX Frame start coordinate coarse 0/127

offset
FESY Line start coordinate coarse 0/127

offset
FESL Frame and Line Length 0/63
FLAP Underlap: 13/1

13 = Overlap
1 = Underlap

FESXF Horizontal Fine Positioning 0/31

frame
FESYF Vertical Fine Positioning Line 0/31
FESTE Track Enable: 13/1

~ = Map Only
1 = Map then track

FESTSR 	 Track Scan Rate Change 0/1
13 = Fast
1 = Slow

FESTHD 	 Threshold: 0/3

o = +11

1 = +113

2 = +9

3 = +8

5-15

NAME USE MIN/MAX
FESSM System Mode: 012

o= Primary
1 = Search and Track
2 = Field Camera

:FOCUS - EEA Focus

Description
Command the EEA Focus. Selection of one of two redundant sets of
variables and command paths is accomplished by issuing the SW MECH,a
directive. The values of the two variable sets and of the S\~ setting

are displayed by issuing the EXAMINE SERIAL,MECH directive. The vari
able used to generate the :FOCUS command is:
NAME USE MIN/MAX
FOC Focus Drive Select: 1/8

1 = PHIlA
2 = PHI2A
4 = PHIlB
8 = PHI2B

:IRA - Inertial Reference Assembly

Descriptio'!.
Commands the Inertial Reference Assembly. Selection of one of two
redundant sets of variables and command paths is accomplished bv
issuing the SH IRA,a directive. The values of the two variable sets
and of the SW setting are displayed by issuing the EXAMINE SERIAL,IRA

directive. Variables used to generate the :IRA command are:
NAME USE MIN/MAX

Mode Control:*

IRAMC One bit per mode control MSB
 0/63

being control 1 and LSB being
control 6;
o = Rate
1 = Hold/Slew

5-16

NAME

IRAGYR

IRAHTR

IRACOLD

IRAQB

IRABD
IRABA

*IRAMC,IRAGYR, and
GY6.
Example:
IRAGYR = GY3+GY6

USE MIN/MAX
Gyro Select:*
One bit per gyro MSBbeing 0/63
gyro 1 and LSB being gyro 6;
o = OFF

1 = ON

Heater Select:*

One bit per heater MSB being 0/63

heater 1 and LSB being heater 6;

o= LO (4.5 watts)

1 = HI (12 watts)

Rate Cold: 0/1

o= Ra te Norma 1

1 = Rate Cold

Qua 1ifi er Bit: 0/1

o = Disable control of IRAMC,

IRAGYR, IRAHTR, and IRACOLD
1 = Enable control of IRAMC,

IRAGYR, IRAHTR, and IRACOLD

Bias Data Bit 0/1023

Bias Address: 0/7

BI0000 1 = Disable

BI~0011 = Pitch Active

BI0010 1 = Roll Active
BI0100 1 = Yaw Active

IRAHTR can be set with contstants GY1 through

/ SELECT GYROS 3 AND 6

5-17

, ,

:NUTAT - Nutation

Description

Commands nutation. There is no redundant unit. The value of the vari

able set ;s displayed bv issuing the EXAMINE SERIAL,PRECESS directive.

Variables used to generate the :NUTAT command are:

NAME USE MIN/MAX

ZERADJ Zero crossing adjust 0/15

-.14 + ZERADJ*.017V
TGA Gain Ad.;ust: 0/1

o= -0.52V+TADJ*0.0147V

1 = -0.72V+TADJ*0.0147V
NUTIN o = Nutation OFF 0/1

1 = Nu ta ti on ON
NUTEN Nutation Register Update 1/1

(always 1 for nutation)
TADJ 	 Threshold Adjustment 0/15

0.014V/Count

:PRECESS - Precession

Description

Commands precession. There is no redundant unit. The value of the vari

able set ;s displayed bv issuing the EXAMINE SERIAL,PRECESS directive.

Variables used to generate the :PRECESS command are:

NAME USE MIN/MAX

PSUN Sun Pulse: 0/1

o = Select SMSS Pulse
1 = Select PAS Pulse

PLONG Sector Fire Count 0/15
PESUN Fire Pulse: 0/1

o = Sun Disable
1 = Fire on Sun Pulse

PSTART Start Sector 0/127
PFIRE Number of Precession Firings 0/255

5-18

:PAS - Panoramic Scanner

Description
Commands the panoramic scanner. Selection of one of two redundant
sets of variables and command paths is accomplished by issuing the
SW PAS,a directive. The values of the two variable sets and of the SW
setting is displayed by issuing the EXAMINE SERIAL,PAS directive. Vari
ables used to generate the :PAS command are:
NAME USE MIN/MAX
PAS MOD ~ = Spherical Mode ~/1

1 = Planar Mode
PASCLK ~ = 125~Hz clock, 78.~Hz step ~/3

1 = 625Hz clock, 39.~Hz step
2 = 312Hz clock, 19.5Hz step
3 = 156Hz clock, 9.8Hz step

PASDIR ~ = CCW Scan Direction
1 = CW Scan Direction

PASMAX Theta Maximum Angle ~.~/36~.0

PASLEW ~ = Slew Disable 0/1
1 = Slew Enable

PAS CAN ~ = Select Continuous Submode Scan
1 = Select Sector Scan

PASSUN ~ = Select PAS Sun Sensor 0/1
1 = Select SMSS Sun Sensor

PASMIN Theta Minimum Angle 0.0/360.0

:RW - Reaction Wheel

Description
Commands the reaction wheels. Selection of one of two redundant
sets of variables and command paths is accomplished by issuing
the SW RW,a directive. The values of the two variable sets and of the
SW setting are displayed by issuing the EXAMINE SERIAL,RW directive.
Variables used to generate the :RW command are:

5-19

NAME
RWMODE

Symbol
R1

R2

CSS

S3
Sl
S2

R1,CSS

R1,CSS,S3

R2,CSS

R2,CSS,S3

R1

R1,S3

R2

R2,S3

CSS,S3
Sl

S2

USE
Mode Decoder, defined as follows:

Symbols used in following defini
tions.

Definition
Enable Rate 1 to C&M Card
Enable Rate 2 to C&M Card

Enable Coarse Sun Sensor

C&M CMD to Wheel Driver
Enable D/A 1 to Wheel Driver
Enable D/A 2 to Wheel Driver

Reset

Sun Acquisition Jet-IRA Rate 1

(Gyro 1,3,5)

Sun Acquisition Wheel-IRA Rate 1

(Gyro 1,3,5)

Sun Acquisition Jets-IRA Rate 2

(Gyro 2,4,6)

Sun Acquisition Wheel-IRA Rate 2

(Gyro 2,4,6)

Jet Rate Damp-IRA Rate 1

(Gyro 1,3,5)

Wheel Hold-IRA Rate 1

(Gyro 1,3,5)

Jet Rate Damp-IRA Rate 2

(Gyro 2,4,6)

Reset

Wheel Hold-IRA Rate 2

(Gyro 2,4,6)

Wheel Sunbath-Powder Restore Mode
Dighold, Slew, Mode, Gradcntrl,

Opnloop

Dighold, Slew, Mode, Grndcntrl,
Opnloop

5-20

MIN/MAX

0/15

o
1

2

3

4

5

6

7

8

9

10

11

12

NAME USE MIN/MAX

Reset 13
Reset 14
Reset 15

RWENAB Reaction Wheel Mode Control: 011
o = Disable
1 = Enable

REDUN Redundant Wheel Command 0/255
ROLL Roll Wheel Command 0/255
YAW Yaw Wheel Command 0/255
PITCH Pitch Wheel Command 0/255

:SCAN - SSCL Scan

Description
Commands the SSCL scanner. Selection of one of four redundant sets
of variables and command paths is accomplished by issuing the Sl~ CAM,a
directive. The values of the four variable sets and of the SW setting
are displayed by issuing the EXAMINE SERIAL,SCAN directive. Variables
used to generate the :SCAN command are:
NAME USE MIN/MAX
ISA Starting Sample (Initi a1 Sample 0/1023

Address-895)
ILA Starting Line (Initial Line 011023

Address-895)
LSR Number of Lines (Line Scan 0/1023

Range-768)
SSR Number of Samples per Line 011023

(Sample Scan Range-768)

5-21

:SIHTR - SSCL Camera Setup

Description
Executes setup of SSCL camera. Selection of one of four redundant
sets of variables and command paths is accomplished by issuing the
SW CAM,a directive. The values of the four variable sets and of the
SW setting are displayed by issuing the EXAMINE SERIAL,SIHTR directive.
Variables used to generate the :SIHTR command are:
NAME USE MIN/MAX
HTR Hea ter Voltage 0/127

SEC Secondary High Voltage 0/127

Gain Setting
Gl Grid 1 DAC Setting 0/127

In addition to setting the variables (NAME) equal to a value,
they may be set equal to the following predefined constants:

NAME CONSTANT DEFINITION
G3 G3D Grid 3 DefoclJsed

G3F Grid 3 Focused
YAL YAN V-Alignment Normal

YAMC V-Alignment Minimal Cntrd
XAL XAN X-Alignment Normal

XAMC X-Alignment Minimal Cntrd

:SIALGN - SSCL Camera Setup

Description
Executes setup of SSCL camera. Selection of one of four redundant
sets of variables and command paths is accomplished by issuing the
SW CAM,a directive. The values of the four variable sets and of the
SW setting are displayed by issuing the EXAMINE SERIAL,SIALGN directive.
Variables used to generate the :SIALGN command are:

5-22

NAME
G3
VAL
XAL

USE
Grid 3 DAC
V-Alignment DAC
X-Alignment DAC

Setting
MIN/MAX

0/127

0/127

0/127

In addition
they may be

to setting the variab
set eaual to the following

les (NAME) equal
predefined

to a value,
constants:

NAME CONSTANT DEFINITION

HTR

SEC

HTL
HTH
SECI
SEC2
SEC3
SEC4
SECMX

Heater Voltage Low
Heater Voltage High
Max Gain (Expose)
Med Gain (Expose)
Min Gain (Expose)
Prep Gain
Max SEC

Gl GICO Grid 1 Cutoff
GIED Grid 1 Erase Defocused
GIEF Grid 1 Erase Focused
GIRD Grid 1 Read
GIMX Grid 1 Vol tage

:SIUVC - SSCL Camera Setup

Description
Executes setup of SSCL camera. Selection of one of four redundant
sets of variables and command paths is accomplished by issuing the
SW CAM,a directive. The values of the four variable sets and of the
SW setting are displayed by issuing the EXAMINE SERIAL,SIUVC directive.
The variable used to generate the :SIUVC command is:
NAME USE MIN/MAX
UVC Ultraviolet Converter 0/127

Digital to Analog

Gain Setting

5-23

In addition to setting UVC equal to a value, it may be set equal
to the following predefined constants:

CONSTANT DEFINITION

UVCl Max Gain (Expose)

UVC2 Med Gain (Expose)

UVC3 Min Gain (Expose)

UVC4 Prep

UVCOF UVC Cutoff

UVCMX Max UVC

SPECIAL SERIAL COMMANDS

The following set of commands are exceptions to the rule of setting variables
by way of assign statements. These commands have an argument string which
must follow the command on the same line.

:APER - EEA Aperture

Description
Requests a command to select the EEA aperture position. Selection of
one of two redundant sets of command paths is accomplished by issuing
the SW MECH,a directive.

Format

:APER <a>

where no argument = deselect aperture, or

where a = OPEN

for aperture open, or;

= CLOSE

for aperture closed.

Example

:APER OPEN I OPEN EEA APERTURE

5-24

:CAMSEL - EEA Camera Select

Description
Requests c command to EEA mechanism camera select. Selection of one
of two redundant sets of command paths is accomplished by issuing the
SW MECH,a directive.

Format

:CAMSEL <a>

where no argument = deselect all cameras, or

where a = SWR

for redundant short wavelength;

= SWP

for prime short wavelength;

= LWR

for redundant long wavelength;

= LWP

for prime long wavelength.

Example
:CAMSEL SWP / SELECT PRIME SHORT WAVELENGTH CAMERA

:DISP - EEA Dispersion

Description
Requests a command to select EEA dispersion. Selection of one of two
redundant sets of command paths is accomplished by issuing the SW MECH,a
directive.

5-25

Format

:OISP <a>

where no argument = deselect disrersion, or

where a = SWL

for short wavelength low;

= SWH

for short wavelength high;

= LWL

for long wavelength low;

= LWH

for long wavel ength high.

Example
:OISP LWL I SELECT LONG WAVELENGTH LOW

:SIMOOE - SSCL Mode

Oescri pti ~~
Requests a command to SSCL camera for mode determination. Selection
of one of four redundant comnand paths is accomplished by issuing the
SW CAM,a directive. The value of the four variable sets and of the
SW setting is displayed by issuing the EXAMINE,SERIAL,SIMOOE directive.
The variable used to generate the "SIMOOE command is:
NAME USE MINIMAX

SZ STEP SIZE ~/3

SZ needed to be assigned before command transmission.

5-26

Format

:SIMODE <a, ... ,n>

where no argument = clear camera mode, or

where a through n = zero, one or more of the following parameters:

Parameter Use
WLC Wavelength Calibration Lamp
TF2 Tungsten Flood Lamp Enable PS # 2
FB Fudicial and Backhole Lamp Enable
TFl Tungsten Flood Lamp Enable PS # 1
UVF UV Flood Lamp Enable

and zero, or one and only one, of the following:

EX Expose

ER Erase Fast

RDER Erase Read Rate

RDLO Read La Gai n

RDHI Read Hi Gain

STBY Standby

Example
:SIMODE FB,RDHI / ENABLE FB LAMP, READ HIGH GAIN

:CRU - Command Relay Unit

Description
Requests a command to the command relay unit. Multiple relays actuation
wi 11 be sent as a sequence of commands, one comma nd for each rel ay
specified. There is no redundant command path for the :CRU command.

5-27

Format

:CRU a,m<,n, ... ,Z>

where a = ON

for setting relays on;
= OFF

for setting relays off.
m - z = integer constants from 1 to 64 representing relays to be set.

Table 5-1 contains the listing of relays and their function.

Example
:CRU ON,1,6,10 I SET LVPSl,DMU,OBC2 RELAYS ON

:LVSW - Low Volt~

Description
Controls the application of low voltage to the SIC subsystems. Any
combination of the 10 relays can be controlled with a single command.
Selection of one of two redundant command paths is accomplished by
issuing the SW LVSW,a directive.

Format

:LVSW <a,m,b,n, ... ,g,x>

where no arguments = all devices off, or

where a - 9 = one or more of the subsystem names,

MUXI MECI SWR LWR FESI
MUX2 MEC2 SWP LWP FES2

m - x = either:

= ON or;

= OFF

Example

:LVSW MUXl,ON,MECl,ON,LWP,ON I TURN ON CAMERA 1

:LVSW ITURN OFF ALL DEVICES

5-28

Table 5-1. U Command Listing

(13) (1 4) (10)
+-------+---------------+---------+
:NOTUSEO:CONTROL(ON/OFfl:RELAY 1.0:
+-------+--------~------+--------.+

1 37
CMO SYS FUNCTION TELEMETRy STATUS *ON OFF **10

1
2
3
4
5
6
7
8
9
10

EloA
EEA
ACS
ACS
ACS
DMU
SBANO
51
SI
OBC

POWER SUPPLY NO.1
SEC. MIR ROR HTR CIRC~IT NO.1
ENGINE/VALVE ORIV~R NO.1
WOA PowER SUPPLY NU.I
IRA GYRO NO.1
DATA SYSTEM NO.1
TRANSMITTER POWER RELAY A
MODE SELECT NU.2
SUN S~UTTER ELECTRONICS
OBC NO.2 PQV;ER

A5C2-57 <O.IV=OFF >4.0V=ON
NCT
SB-22 O=OFF I=ON
ASC2-0 <O.IV=OFF >3V=ON
OSC-O/l BIT 21 O=OFF I=ON
SB-8 O=OFF I=ON
ASCI-2/3 <0.IV=OFF>3.5V=ON
NDT
NOT
ASC2-55 <. lV=OFF >4.5V=ON

27
27
27
27
27
27
27
27
27
27

26
26
26
26
26
26
26
26
26
26

37
36
35
34
33
32
31
30
29
28

1 1
12
13
14
15
16
17
Hl
19
20

5 I
EEA
51
ACS
ACS
ACS
DMU
51
51
5 I

CAL LAMP PWR SUPPLY NO.1
POWER SUPPLY NO.2
MOOE SELECT NO.1
ENGINE/VALVE DRIVER NO.2
WDA POwER SUPPLY NO.2
IRA GYRO NO.2
DATA SYSTEM NO.2
FOCUS DRIVE NO.1
SCEM NO.4 SHORT WAVE REDUNDANT
SUN SHUTTER DIRECT DRIVE

OSC-30 O=OFF I=ON
ASC2-59 O.OV=OFF 4.5V=ON
NOT
S8-23 O=OFF I=GN
ASC2-5 <O.IV=OFF >3V=ON
D5C-0/l BIT 22 O=GFF I=ON
58-19 O=OFF I=ON
NDT
OSC-27 O=OFF I=ON
NOT

25
25
25
25
25
25
25
25
25
25

24
24
24
24
24
24
24
24
24
24

37
36
35
34
33
32
31
30
29
28

Ul
I

N
~

21
22
23
24
25
26
27
28
29
30

ACS
51
51
51
SBANO
ACS
ACS
ACS
51
51

FINE DIGITAL SUN SENSOR NO.1
CAL LAMP PWR SUPPLY NO.2
PRI. MIRROR HTR CIRCUIT NO.1
SCEM NO.1 LONG WAve PRIME
POWER AMP NO.1
PITCH WHEEL DRIVER +28V
IRA GYRO NO . 3
IRA CO MM ON ELECTRONICS NO.
FOCUS DRIVE NO.2
SUN SHU1TER OIRECTI0N SEL.

FSS ASCI-59 <O.IV=OFF >3V=ON
OSC-31 O=OFF I=ON
NOT
OSC-24 O=OFF I=ON
58-9 O=OFF I=ON
ASC2-7 <24V=ON
DSC-O / l BIT 23 O=OFF I=ON
OSC-O BIT 13 O=OFF I=ON
NDT
NOT

23
23
23
23
23
23
23
23
23
23

22
22
22
22
22
22
22
2L
22
22

37
36
35
34
33
32
31
30
29
28

31
32
33
34

ACS
ACS
51
51

P,~SNO.l

I~A COMMON ELECTRONICS NO. 2
FOCUS POSITION ELECTRONICS
PRI. MIRROR HTR CIRCUIT NO.2

05C-28 O=OFF
D::iC-l BIT 14
NDT
NOT

I=UN
O=OFF 1=ON

21
21
21
21

20
20
20
20

37
36
35
34

35
36
37
38

51
SBANO
ACS
ACS

SCEM NO.2 LO NG WAVE REDUNDANT
POWER AMP NO.2
YAW WHEEL DRIVER ~28V
IRA GYRO NO.4

OSC-25 O=OFF I=ON
SB-l0 O=OFF I=ON
ASC2-B <24V=ON
OSC-Ojl BIT 24 O=OFF I=ON

21
21
21
21

20
20
20
20

33
32
31
30

39
40

OBC
S1

OBC NO.1 CONFIGURATION
FOCUS LAUNCH hOL~

PWR. ASC2-3
NOT

<.IV=OFF >4.5V=ON 21
21

20
20

29
28

41 51 APERTURE SELECT NO.1 NOT 19 18 37

42 S6AND POI-IER AMP NO.3 S8-11 O=OFF 1 =ON 19 18 36

43 HAPS ARM HE~TER GROUP NO.1 NDT 19 18 35
44
45

ACS
ACS

IRA
PAS

GYRO
tJO. 2

NO . 5 DSC-0/1 BI T 25 O=.JFF
D5C-29 O=OFF I=ON

1 =ON 19
19

18
18

34
33

4 6
47
48

SI
51
ACS

CAMERA SELECT NO.l&DECK
SEC. MIRROH flTR CIRCUIT
ROLL WHEEL DRIVER +28V

HEATER
NO.2

NO.1 NOT
NDT
ASC2-9 <24V=ON

18
19
19

1 B
18
18

32
31
30

Table 5-l. CRU Command Listing (Continued)

CMD

49

50

51
52
53
54
55
5G
57
58
59
60

61
62
63
64

SYS

SBAND

D8C

ACS
Sl
ACS
ACS
SI
SDAND
SBAND
SI
OBC
ACS

PYRO
PYRO
PYRO
PYRO

FUNCTION

TRANSMlfTER 1/2 SELECT

OBC NO.2 CO~FIGURATION PWR.

REDUNDANT WHEEL DRIVER +28V
APERTURE SELECT NO.2
FINE DIG!TAL SUN SENSOR NO.2 FSS
SFIN MODE SUN SENSOR-SMSS
CAMERA SELECT NO.28UECK HEATER NO.2
TRANSMITTER POWEn RELAY B
FOHER AMP NO.4
SCEM NO.3 SHORT WAV~ PRIME
OBC NO.1 PO'IIER
IRA GYRO NO.6

SOLAR ARRAY & SI COVER ARMl
AFOG~E BOOST MOTOR ARMl
APOGEE BOOST MOTOR ARM2
SOLAR ARRAY & SI COVER ARM2

TELEMETRY STll.TUS

ASCl-2 XMTRl >3.5V=ON
ASCl-3 XMTR2 >3.5V=ON
ASC2-55 <.lV=OFF >4.5V=ON

ASC2-10 <24V=ON
NOT
ASCl-60 <O.lV=OFF >3V=ON
ASC2-1 <0.1 V-OFF >3V=ON
NOT
ASC1-~ / 3 <0.lV=OFF>3.5V=ON
SB-12 O=OFF l=QN
DSC-26 O=OFF l=UN
ASC2-3 <O.lV~OFF >4.5V=ON
l . .3C-0/1 BIT 26 O=OFF l=ON

DSC-23 O=DISARM l=ARM
D5C-22 O=DISARM l=ARM
DSC-22 O=DISARM l=ARM
DSC-23 O=DISARM l=ARM

*ON

19

19

17
17
17
17
17
17
17
17
17
17

15
15
15
15

OFF

18

18

16
16
16
16
16
'6
16
16
16
16

14
14
14
14

··ID

29

28

37
36
35
34
33
32
31
30
29
28

37
36
35
34

NOTE:
OSC=OIGITAL SUB COM
ASC=ANALOG SUB COM
S8=STATUS BIT
NDT"NO DIRECT TELEMETRY

(J1
I

W
o

BIT STRUCTURE:
BITS 1 THRU 13 NOT USED
8ITS 14 THRU 27 ARE CONTROL BITS
BITS 28 THRU 37 ARE RELAY 1.D.BITS

• ON AND OFF REFER TO CONTROL BIT .
•• 10 REFERES TO RELAY ID FIELD.

SERIAL COMMAND 8 HEX ADDRESS 88

*Reprinted from RCA IITelemetry and Command r"lanual,1I (IUE-733-76-1Ol).

OTHER COMMANDS

COMMAND - Build Unique Command

Description
Provides the capability of specifying any 37-bit configuration as a
serial command. The COMMAND function generates a serial command and
stores it in a buffer. A :SEND function is needed for execution.

Format

COMMAND a,x1'Y1<""'x ,y >
n n
where a = the serial address (0 to 63) of the desired command,

x(i) = an expression which evaluates to an integer number defining
the number of bits to be used (field size) in representing
y(i)-the sum of all x(i)ls must equal 37, any individual
IXI can range from 1 to 32.

y(i) = an expression which evaluate to an integer number specifying
the value to be assigned to x(i). The right-most IXI number
of bits of Iyl will be used. Negative values of Iyl are
treated as 21 s complement numbers.

Example
COMMAND 14,7,XI7FI ,1~,X'3FF' ,20,X'FFFFF'
Specifies a command for address 14 with every bit set to 1.
1st 7 bits = XI7F I = 111 1111
next 1~ bits = XI3FF I = 11 1111 1111
final 20 bits = X'FFFFF ' = 1111 1111 1111 1111 1111

:SEND - Execute Unique Command

Description
Requests that the serial command built by a COMMAND function be sent
for a specified number of times, at a specified interval. If optional
arguments are missing, command is sent one time. The data is not
destroyed.

5-31

Format
:SEND <i ,n>
where i = an expression which evaluates to a decimal number specifying

the interval, in seconds between commands (minimum of 0.1);
n = an expression which evaluates to an integer number specifying

the total number of commands to send.

Example
COMMAND 14,7,X'7F' ,30,X'3FFFFFFF' / BUILD COMMAND
:SEND 1.5,20 / SEND AT 1.5 SEC RATE, 20 TIMES
:SEND / SEND 1 TIME

:IMP - Execute Impulse Command

Description
Requests a series of one or more impulse commands. Multiple impulse
command requests will be sent as a sequence of commands. Repeated com
mands will be repeated. A request for a series of impulse commands

wi 11 be transmitted faster than requests for each command separately.

Format

:IMP a<,b, ... ,n>

where a - n = positive integer constants 2127 representing specific

impulse commands. Table 5-2 contains the impulse commands.

Example
:IMP 3,17,107

5-32

IdUIt:: :l-L. . "IPU I:>e \...UlllliIOltU;:'·

CMDII SYS FUNCTION VErIFlCilTION HEX
o NOT USED N/A 000
1 P\~R BOOST REGULATOR NO.1 ON DSC CH.12 BIT 8=0 100

0802 PWR DOOST REG~LATOR NO.1 OFF DSC CH.12 BIT 8=1
3 PWR DOOST ~EGULATOR NO.2 ON DSC CH.13 BIT 8=0 180
4 PWR BOOST REGULATOR NO.2 OFF DSC CH.13 BIT 8=1 040

5 PWR CHARGE REGULATOR NO.1 ON DSC CH.12 BIT 6=0 140

6 PW~ CHARGE REGULATOR NO.1 TRIKLE CH osc CIL12 BIT 6=1 OCO
7 PWR RATTrRY NO.1 TRICKLE CHARGE HI DSC CH.12 BIT 5=0 ICO

B PWR BATTERY W)' 1 TRICKLE CHARGE La DSC CH.12 BIT 5=1 :>20

9 PWR CHARGE REGULATOR NO.2 GN DSC CH.13 BIT 6=0 120
10 P\~R CHARGE REGULATOR NO.2 TRIKLE CH DSC CH.13 BIT 6=1 OAO
1 1 P~JR BATrERY NO.2 TRICKLr CHARGE HI DSC CH.13 BIT 5=0 lAO
12 PW~ BATTERY NO.2 ;PICKLE CHARGE La DSC CH.13 BIT 5=1 060
13 PWR BATTERY&3RD ELECTRODE NO.1 ON DSC CH.12 BIT 7=0 & BIT 1=0 160
14 PWR BATTERY&3RD ELECTRODE NO.1 OFF DSC CH.12 BIT 7=1 & BIT 1=1 OEO
15 PWR BATTERY~3RU ELECTRODE NO.2 ON OSC CH.13 BIT 7=0 & BIT 2=0 I EO
16 PWR BATTERY&3RD ELECTRODE NO.2 OFF DSC CH.13 BIT 7=1 & BIT 2=1 010

11017 SP~RE

18 PvJR 3RD ELECTRODE NO.1 OFF DSC CH.12 BIT 1=1 NOTE 2 090
19 08C OBC 2 CPU OFF DSC CH.l0 190

.20 PWR 3RD ELECTRODE NO.2 OFF DSC CH.13 BIT 2=1 NOTE 2 050
21 PWR B~TTERY NO.1 UV DETECTOR ON DSC CH.12 8IT 4=0 150
22 PWR BATTER: NO.1 UV DETECTOR OFF DSC CH.12 BIT 4=1 ODO

lDO23 PWR BATTERY NO.2 UV DETECTOR ON DSC CH.13 BIT 4=0
24 PWR BATTERY NO.2 UV DETECTOR OFF DSC CH.13 BIT 4=1 030
25 PWR +28 BUS UV DETECTOR ON DSC CH.12 BIT 2=0 130
26 PWR +2B BUS UV DETECTOR OFF DSC CH.12 BIT 2=1 OBO
27 PWR +28 BUS DC DETECTOR ON DSC CH.12 BIT 3=0 I BO

P~'JR +28 BUS DC DETECTOR OFF D3C CH.12 BIT 3=1 070
Ul 28

170I 29 PWR AUTOMATIC LOAD REMOVE DISABLE DSC CH.13 BIT 3=1 NOTE 3
W AUTOMATIC LOAD REMCVE ENABLE DSC CH.13 BIT 3=0 OFO
W 30 PWR

31 RF VHF NO.1 TRANSMITTER ON ASCI CH.4>3.8V 1 FO
32 RF VHF NO . 1 TRANSMITTER OFF ASCI CH.4<0.IV 008

VHF NO.1 RANGING ON OBSERVE RANGING DATA lOB33 RF
34 RF VHF NO . 1 RANGING OFF RANGING DATA LOSS 088
35 RF NO. I MOD SOURCE NO. I (DMU 1) OBSERVE TM WITH OMU 1 ON 188
36 RF NO.1 MOD SOURCE NO.2 (DMU 2) 08SERVE TM WITH DMU 2 ON 048
37 RF VHF NO . 2 TRANSMITTER ON ASCI CH.5>3.8V 148
38 RF VHF NO.2 TRANSMITTER OFF ASCI CH.5<0.IV OC8

VHF NO.2 RANGING ON OBSERVE RANGING DATA lCB39 RF
028

41 RF NO.2 MOD SOURCE NO.1 (DMU 1) OBSERVE TM WITH OWU 1 ON 128
42 RF NO.2 MOD SOURCE NO.2 (DMU 2) OOSERVE TM WITH DMU 2 ON OA8
43 51 EEA LOW VOLTAGE sw-SELECT P.S.1 NOT lA8
44 SI EEA LOW VOLTAGE SW-SELECT P.S.2 NDT 068
45 SI SUN 5HUTT~R OPEN STATUS BITS 7=0,6=0 168
46 SI SUN SHUTTER CLOSE STt-TUS BITS 6=1,7=1 OE8
47 SI EEA LOW VOLTAGE SW.-ALL LOADS OFF NDT lE8
48 CMD COMMAND DECODE~ OFF (NOTE 1) NO. I=S8 20!NO.2=SB 21 =0 018
49 OBC OBC NO.1 CPU OtJ DSC CH.9

40 RF VHF NO.2 RANGING OFF RANGING UATA LOSS

118
50 OBC GBC NO.1 CPU OFF uSC CH.9 098
51 DOC OBC f~O. 2 cPU ON DSC CH. 10 1!38
52 OBC aBC 1 uprER MEMORY BUS ON DSC CH.18 = I (Ff) 058
53 OBC O~C 1 UPPER MEhlORY BUS OFF DSC CH.18 0 (00) 158
54 OBC OBC I LOWER MEMORY BUS ON DSC CH.19 1 (FF) OD8
55 OBC OBC 1 LS~ER MEMOqy BUS OFF DSC CH.19 0 (00) IDA
56 OBC OBC 2 UP~ER MEMORY BUS ON DSC CI-L20 1 (FF) 038
57 OBC 08C 2 UP~ER MEMO~Y BUS OfF DSC CH.20 0 (00) 138

http:CH.5<0.IV
http:CH.5>3.8V
http:CH.4<0.IV
http:CH.4>3.8V

Table 5-2. Impulse Con~ands (Continued)

CMDN SYS FUNCTION VERIFICATION HEX

08858 aBC OBC 2 LO~ER MEMORY BUS ON DSC CH. 21 = 1 (F F)
1B859 OBC aBC 2 LOWER MEMORY BUS OFF DSC CH.21 = 0 (00)
078EO 51 FOCUS ELECfRONICS l-START FOCUS EXPERIMENT DATA VERIFY

61 SI FOCUS EL[CTRONICS 2-5TART FOCUS EXPERIMENT DAT~ VERIFY 178
01"862 51 FINE ER~OR SEN SOR 1-5EARCH ADVANCE EXPERJ~lNT DATA V~~IfY
lF8G3 51 FINE ERROR SENSOR 2-SEARCH ADVANCE EXPERIMENT DATA VERIFY
00464 SPARE
10465 ACS PITCH WHEEL DRIVER-CONVERTER 1 NO DIRECT VERIFY
08466 ACS PITCH ~JHEEL Dr:IVt:R-CONVERTEF< 2 NO DI~ECT VERIFY

67 ACS YAW WHEEL DRIVER-CONVERTER 1 NO DIRECT VERIFY 184
68 ACS YAW WHEEL DRIVER-CONVERTER 2 NO DIRECT VERIFY 044

69 ACS ROLL WHEEL DRIVER-CONVERTER 1 NO 9IRECT VERIFY 144
OC470 ACS ROLL WHEEL DRIVER-CONVERTER 2 NO D!RECT VERIFY

71 AC5 REDUNDANT WHEEL DRIVER-CONVERTER NO DIRECT VERIFY lC4

72 ACS REDUNDANT WHEEL DRIVER - CONVERTER 2 NO OIRECi VERIFY 024
73 ACS PRECESSION / NUTATION-CONVERTER 1 NO DIRECT VERIFY 124
74 ACS PRECESSION/NUTATION-CONVERTER 2 NO DIRECT VERIFY OA4
75 ACS Cor.1P EN SA T I ON/M I X ltJG-CON V ER TER 1 1 A4
76 ACS COMPENSATION / MIXING-CONVERTER 2 064
77 ACS WHEEL CMD D/ A l-CONVERTER 1 NO DIRECT VERIFY 164
78 ACS WHEEL CMD D/A l-CONVERTER 2 NO DIRECT VERIFY OE4
79 ACS ~JHEEL CMO D/ A 2-CONVERTER 1 NO DIRECT VERIFY lE4
80 ACS WIIEEL CMG D/ A 2-CONVERTER 2 NO DIRECT VERIFy 014
81 ACS ACCELERm:ET ER A-COtNE.RTER 1 NO DIRECT VERIFY 114
82 ACS ACCELEIWME TER A-CONVERTER 2 NO DIRECT VERIFY 094
83 ACS ACCELEQOMETER B-CONVERTER 1 NO DIRECT VERIFY 194
84 ACS ACCELEROMETER B-CONVER TER 2 NO DIRECT VERIFY 054
85 HAPS HAPS HTR / TM MOOULE-CONVERTER 1 NO DIRECT VERIFY 154

tJ1 OD4
I 86 HAPS HAPS HTR/TM MODULE-CONVERTER 2 NO DIRE CT VERIFY

W 67 HAPS E/ V CMD LOGIC l-CONVERTER 1 NO DIRECT VERIFY lD4
.po

88 HAPS E/V CMO LOGIC l- -CONVERTER 2 NO DIRECT VERIFY 034
89 HAPS E/ V CMD LOGIC 2-CONVE~TER 1 NO DIRECT VERIFY 134
90 HAPS E/V CMD lOGIC 2-'CONVERTER 2 NO DIRECT VERIFY OB4
91 HAPS HAPS HE~TER GROUP 1 ON DSC 1 1 BIT 1= 1 1 B4
92 HAPS HAPS HEAlER GROUP 1 OFF OSC 11 BIT 1= 0 074

93 HAPS HAPS HEATER GROUP 4 ON DSC 11 BIT 2=1 174
94 HAPS HAPS HEAlER GROUP 4 OFF DSC 11 BIT 2=0 OF4
95 HAPS HAPS HEATER GROUP 6 ON DSC 11 BIT 3=1 1 F4
96 HAPS HAPS HEATER GROUP 6 OFF DSC 11 BIT 3=0 OOC
97 HAPS HAPS HE!, TER GROUP 7 Otl DS': 11 BIT 4=1 10C
98 HAPS HAPS HEATER GROUP 7 O~F DSC 11 BIT 4 =0 OBC
99 HAPS ARM HAPS HEATE" GROUPS 2,3,5 DSC 11 BIT 5=1 18C
100 HAPS DISARM HAPS HEATER GROuPS 2,3,5 DSC 11 BIT 5=0 04C
101 H.t.PS HAPS IIEATER GPOUr 2 ON DSC 11 BIT 6=1 14C
102 HAPS HAPS HEATER GROUP ~ OFf- DSC 11 BIT 6=0 OCC
103 PYRO SOL"R ARHAY DEPLO Y-PRIMARY SYS FIRE STATUS BIT 4=0 lCC
104 PYRO SOLAR ARRA Y DEPLOY-REDUNUT SYS FIRE STATUS BIT 5=0 02C
105 PYRO SI DUST COVER DEPLOY-FIRE EXP. DATA 12C
106 PYRO APOGEE BOOST MOTOR-FIRE ASC-~ CH.19 OAC
107 HAPS HAPS HEATER GROUP 3 ON DSC 11 BIT 7 = 1 lAC
100 HAPS HAPS HEATER GROUP 3 OFF DSC 11 BIT 7=0 06C
109 HAPS HAPS HEATER GROUP 5 ON DSC 11 BIT 8 = 1 16C
110 HAPS HAPS HEATER GROUP 5 OFF DSC 11 BIT 8=0 OEC

1 EC1 1 1 SPARE
112 CMO COMMAND DECODER ON (NOTE 1) NO. I=SB 20/NO.2=SB 21 =1 01C
113 ACS FSS NO.1-SENSOR HEAD TOGGLE Dsr 2 BIT 16 (NOTE 4) 11 C
114 ACS FSS NO . 2'-SENSOR HEAD TOGGLE DSC 3 BIT 16 (NOTE 4) 09C

Table 5-2. Impulse Commands (Continued)

CIAO" 	 SYS fUNCTION VERIFICATION HEX

115 !ll-'ARE 19C
116 SPARe OGC
117 SPAPE I~(;

lIB Sf-ARE ODC
119 SPARE IDC
120 CMD CO~lMAND DECODER ON (NOT E 1) NO.l~SB 20/NO.2~S~ 21 -1 03C
121 SPAr~E 13C
122 SPARE OBC
123 SPARE 1BC
124 SPARE 07C
125 SPARE 17C
126 SPARE OFC
127 SPARE 1FC

NOTE:
1. 	 IMPULSE COMMANDS 0 THROUGtt 47. 64 THROUGtl 111. AND ALL SE~IAL COMMANDS

ARE DISABLED BY IMPULSE COMA NO ~B . THEY ARE ENABLED BY IMPULSE COMMAND

11'. !MPULSE COMMAND 120 E~ABLES THE ABOVE COM~ANDS ON THE DECODER

WHICH IS NOT BEING ADDRESSED.

2. 	 PERMITS BATTERY TO BE ON WITH 3RD ELECTRODE OFF.
3. 	 IF AUTO LOAD REMOVE IS DISABLED. FAULT DETECTORS CAN BE MONITORED

ON DSC 13 BIT 1.

4. 	 EACH FINE SUN SENSOR HAS TWO HEADS. BIT=Q SAYS HEAD 1 SELECTED.

NOTE: 	 THE HEX COLUMN LlSTS THE THREE HEX DIGITS THAT CHANGE

BETWEEN IMPULSE COW~ANDS. SEE COMMAND FORMAT BITS 13-24.

(Jl

I
W
(Jl *Reprinted from RCA "Telemetry and COlTvnand Manual," (1U£-733-76-1Ol).

COMMAND SEQUENCES

CMDSEQ - Start Sequence Build

Description
The CMDSEQ directive begins the compilation of a command sequence. Upon
entry of this statement, all following command requests are entered into
a command sequence table. Relative timing between commands may be speci
fied. When the sequence is completely defined, it is available to be
executed by the :SEQ function.
that has been built.

CMDSEQ clears any previous sequence

Format
CMDSEQ

Example
See combined example following the :SEQ function.

ENDStQ - Stop Sequence Build

Description
The ENDSEQ directive defines the end of a command sequence.

Format

ENDSEQ

Example

See combined example following :SEQ function.

5-36

SEQWAIT - Specify Sequence Wait Time

Description
The SEQWAIT directive specifies a time delay between commands in a
command sequence. The delay is specified in tenths of seconds. This
directive may only be used between CMDSEQ and END SEQ directives and
must immediately precede a directive that inserts a command into the
sequence.

Format
SEQWAIT a
where a = an expression which evaluates to an INTEGER nUITlber signifying

tenths of seconds (max = 65535).

Example

See combined example following the :SEQ function.

:SEQ - Execute Command Sequence

Description
Initiate the previously defined command sequence. May be used
repeatedly as its use does not alter or destroy the sequence. If
one or more critical commands exist in the sequence, this will be
flagged before initial transmission. Once approved, the entire
sequence will be transmitted without further flags, regardless of
the total number of critical commands in the sequence.

Format

:SEQ

Example
100 CALL SEQ1,50 / BUILD COMMAND SEQUENCE
101 :SEQ / EXECUTE SEQUENCE
102 WAIT / VERIFY SEQ EXECUTION

721 SEQ1 SUBR / ENTER CMD SEQ BUILD

5-37

722 CMDSEQ / START CMD SEQ BUILD
723 :SIMODE FB,RDHI
724 SEQWAIT 155 / WAIT 15.5 SEC
725 :SIUVC
726 SEQWA IT ARG (1) / WAIT 5 SEC
727 :SCAN
728 SEQWAIT 50 / WAIT 5 SEC
729 ENDSEQ
730 RETURN / RETURN FROM SUBROUTINE

This example shows a command sequence being built through a ca 11
to a subroutine. Suppose the procedure was executing at line 100. The
procedure will jump, via the CALL statement at line 100, to the sub
routine shown in lines 721-730. There is, as there has to be, a CMDSEQ
at the front and an ENDSEQ at the back. Note that at line 726 the
SEQWAIT acquires a value passed by the CALL statement. You may use any
directive during the sequence build. EXAMINE, WAIT, SNAP, etc., all
work normally. After the sequence is built, the procedure returns to line
101 and executes that sequence.

5-38

SECTION 6. ON-BOARD COMPUTER (OBC) DIRECTIVES

SECTION 6. ON-BOARD COMPUTER (aBC) DIRECTIVES

The IUE's On-Board Computer (aBC) has three banks of memory. Reference to
locations within these banks is done with both octal and decimal numbers.
Since the conversion is sometimes confusing, the following tabulation is
provided.

aBC Octal Decimal

Bank Locations Locations

~ ~0-~7777 ~-4095

1 ~1~~~0-~17777 4~96-8191

2 ~20~~~-~27777 8192-12287

The ground system consists of four files which pertain to the OBC's contents.

1. Tape Image file,
2. Data Blocks file,
3. Master Image file, and
4. Reconstruct Dump Image file.

The Tape Image and Data Blocks files contain data which can be transmitted
to the aBC. If any of this data is transmitted, amd verified, the exact
copy of the transmission is copied into the Master Image file. This means
that the Master Image file contains what the aBC memories should contain.
The Dump Image file contains data transmitted from the aBC, or what the aBC
memories do contain. Comparisons can be made between the contents of the
Master Image file and the Dump Image file.

6-1

COMMANDS TO OBC

The following set of commands are to the OBC. All OBC commands may be for
matted for one of two redundant command paths by issuing the SW OBC,a direc
tive. The first portion of the set are hardcoded. That is, they have no
variable field and must be issued exactly as the format shows. Therefore,
no example is given as the format is the example.

:OBC GO - Turn On

Description

Generates a command to the OBC to start the hardware.

:OBC RESET - Turn Off

Description
Generates a command to the OBC to stop the hardware and to select
memory bank No. ~ as the fixed bank.

:OBC FIXl - Select Bank 1 as Fixed

Description
Generates a command to the OBC to select memory bank No. 1 as the
fixed bank.

:OBC FIX2 - Select Bank 2 as Fixed

Description
Generates a command to the OBC to select memory bank No.2 as the
fixed bank.

:OBC DUMP - Dumped Fixed Bank

Description
Generates a command to the OBC to dump the fixed bank of memory. The
OBC must be in RESET before this command is given.

6-2

:OBC CMND - General Command

Description

Generates an aBC command based on the input parameters. On execution,

an interrupt 1~ request is generated.

Format
:OBC CMND,a,b
where a = an expression which evaluates to a legal integer number,

see table 6-1, representing an aBC executive request code.
b = an expression which evaluates to a legal integer number,

see table 6-1, representing the data value.

Example
:OBC CMND,12,7

Table 6-l. Legal :OBC CMND Arguments

I'a I b' 'a I b II

CODE MIN/MAX CODE MIN/MAX

~ ~/l 8 ~/2

1 ~/2 9 ~/l

2 1/32 1~ ~/1

3 ~/23 11 ~/3

4 ~/23 12 ~/7

5 ~/l 13 ~/l

6 ~/1 14 ~/l

7 (J/~ 15 ~/1

6-3

:OBC HLOAD - Load Memory Bank

Description

Generates commands to prepare the OBC to receive data and then to load

the specified OBC bank from the OBC Tape Image file. OBC is reset

at beginning of load. Also updates aBC Master Image file with each

command successfully transmitted.

Format

:OBC HLOAD,a<,b>

where a = an expression evaluating to an integer number, 0, I, or 2,

representing bank number.
b = blank

for load whole bank.
= an expression evaluating to last location of selected bank

to load.

= 0 to 4095 for bank 0.

= 4096 to 8191 for bank 1.

= 8192 to 12287 for bank 2.

Example

:OBC HLOAD,l / LOAD OBC BANK 1

:OBC HLD82 - Load Memory Bank (CCIL Unique)

Description
This directive causes a hardware load of the OBC from the OBC Tape
Image File. The difference between HLOAD and HLD82 is in the commands
transmitted. HLOAD transmits commands necessary to prepare the OBC to
receive the load data before the data commands are transmitted. HLD82
only transmits the data commands.

6-4

Format

:OBC HLD82,a<,b>

where a = an expression evaluating an integer number, 0, 1, or 2,

representing memory bank.
b = blank.

= for load whole bank.
= an expression evaluating to last location of selected bank

to load.

= 0 to 4095 for bank 0.

= 4096 to 8191 for bank 1.

= 8192 to 12287 for bank 2.

Example
:OBC HLD82,1,7000 / LOAD PORTION OF BANK 1

:OBC SLOAD - Load Memory Locations

Description
Generates a series of commands to load the OBC memory from contiguous
locations on the OBC Tape Image file. Also updates OBC Master Image
file after all commands are successfully transmitted.

Format
:OBC SLOAD,a,b<,CKSUM>

where a = an expression evaluating to an integer number (0-27777)8
representing the starting location in both the OBC and the
OBC Tape file.

b = 	an expression evaluating to an integer number (0-27777)8
representing the ending location in both the aBC and the
OBC load file. The number must be greater than la l but in
the same ba nk.

CKSUM = option to cause update of memory bank checksum.

Example

:OBC SLOAD,014000 1,0 110000 1 / LOAD 2ND HALF BANK 0

6-5

:OBC PATCH - Load Memory Locations

Description
Generates a series of commands to load specified data into contiguous
aBC memory, starting at a specified location. Also updates OBC Master
Image file after all commands are successfully transmitted.

Format
:OBC PATCH,a,m<,n, ... ,Z>

where a = an expression evaluating to an integer number (0-27777)8
representing starting address in aBC memory.

m - Z = an expression evaluating to an integer number representing
the data to be stored. These may be a maximum of 32 words,
each having a maximum of 18 bits. The series of locations
cannot cross over memory banks.

Example
:OBC PATCH,0110500 1,0 1503011 ,0 120710,10 1101010 1

/ LOAD LaCS 10500,10501,10502

:OBC HDUMP - Dump Selected Bank

Description
Dumps the selected aBC bank four times through the telemetry system.
The DMU must be sampling by ROM2B format, aBC DUMP. This directive
will reset the aBC. The dumped data is quality checked and then
written out to the aBC Dump file. Since the aBC may loose track of
the fixed bank, an :OBC RESET should be sent after the dump. The
directive initiates the auto-collection of the data. Conclusion is
noted by a message to the event printer.

6-6

Format
:OBC HDUMP,a
where a = an expression evaluating to an integer number representing

bank number to dump.
= 0, 1, or 2.

Example

:OBC HDUMP,2 I DUMP OBC BANK 2

:OBC SDUMP - Dump Selected Bank

Description
Dumps the selected OBC bank using the OBC executive program. The DMU
must be sampling by ROM2B format, OBC DUMP. Data is written out to
the OBC Dump file.

Format
:OBC SDUMP,a
where a = an expression evaluating to an integer number representing

bank number to dump.
= 0, 1, 2.

Example

:OBC SDUMP,1 I DUMP OBC BANK 1

:OBC LDBLK - Load Data Blocks

Description

Loads OBC with specified data block and updates OBC master image file

after all commands are successfully transmitted (if they were consecu

tive address locations).

Format

:OBC LDBLK,a

where a = an expression evaluating to a decimal number (0-32) reore

senting data block number.

Example

:OBC LDBLK,3 I LOAD DATA BLOCK 3

6-7

MEMORY BANK IMAGE PROCESSING

OBCLDPRT - Print Tape - Load File

Descri pti on.

Causes an octal print of specified bank of OBC Tape Image file.

Format

OBCLDPRT a

where a =an expression evaluating to an integer number representing

ba nk number.
= ~, 1, or 2.

Exampl e
OBCLDPRT 2 / PRINT OBC TAPE FILE BANK 2

OBCMRPRT - Print Load File

Description
Causes an octal print of the specified bank of the OBC Master Image
fi 1e.

Format
OBCMRPRT a
where a = an expression that evaluates to an integer number represent

i ng bank number.
= ~, 1, or 2.

6-8

OBCDMPRT - Print Dump File

Description

Causes an octal print of OBC Reconstructed Dump Image file.

Format

OBCDMPRT

Example
OBCDMPRT / PRINT OBC DUMP FILE BANK 1

OBCLDTYP - Display Selected Load Locations (Not Implemented)

Description

Ground computer displays selected locations of the OBC tape image file.

Display goes to the calling CRT.

Format

OBCLDTYP a,b

where a = an expression evaluating to an integer number (0-27777)8

representing starting location in tape image to display.
b = an expression evaluating to an integer decimal number speci

fying number of sequential locations to display, maximum of

10.

Example
OBCLDTYP 0'20000',7 / DISPLAY LOCATIONS 020000 to 020006

6-9

OBCDMTYP - Display Selected Dump locations (Not Implemented)

Description

Grou~d computer displays selected locations of the OBC dump image.

Display goes to the calling CRT.

Format

OBCDMTYP a,b

where a = an expression evaluating to an integer number (0-27777)8

representing starting location in dump image to display.
b = an expression evaluating to an integer decimal number speci

fying number of sequential locations to display, maximum of

10.

Example
OBCDMTYP 01400 1,9 / DISPLAY lOCATIONS 0400 to ~0410

OBClDTAP - Start OBC Tape/Disc Transfer (CCIl Unique)

Description
This directive reads a magnetic tape mounted on the Ol device for the
tape header information and then displays the header for the user1s
inspection. Depending on this information, the load is continued or
terminated by the REPLY OBCTAP directive. Tape header is in the
following format: TAPE NNNN MMM DD YYY

REPLY OBCTAP - Process Image Requests (CCIl Unique)

Description
After the OBC header is displayed, the REPLY OBCTAP directive must be
given, with a YES or NO argument. A NO cancels the transfer. A YES
causes the transfer of the three memory banks of data on the magnetic
tape to the OBC Tape Image file. If the transfer is successful and

6-10

the checksum is valid, no further action is necessary. If the checksum
is invalid, the message - TAPE CHECKSUM AND COMPUTER CHECKSUM DO NOT
COMPARE - is output and an internal flag is set which prohibits loading
the file on the spacecraft. You must reply to this message with the
REPLY OBCTAP directive, using APPROVE or SKIP as an argument. APPROVE
will remove the prohibition of the spacecraft load. SKIP will cause
an exit of the tape load procedure leaving the tape image file as
unloadable.

Format

REPLY OBCTAP,a

where a = YES

for transferring the mag tape data to load file;

= NO
for no transfer;

= APPROVE
for approving the load file for SIC transmission even through
the tape had a bad checksum;

= SKIP
for prohibiting the transmission of the load file to the SIC.

OBCCKSUM - Calculate Checksum (CCIL Unique)

Description
This directive computes the memory bank checksum for the memory bank
locations la' to Ib' inclusive. It displays the computer checksum
in the following format: CHECKSUM IS NNNNNN.

6-11

Format
OBCCKSUM a,b
where a = an expression that evaluates to the starting location to

be checked.
b = an expression that evaluates to the ending location to

be checked. la l and Ib l must be in ascending order and
be contained in the same memory bank. Therefore, for
bank 0, la l and Ib l range from 0 to 4095 inclusively;
for bank 1, 4096 to 8191 inclusively; and, for bank 2, 8192
to 12287 inclusively.

Example
OBCCKSUM 4000,4050 / GET CHECKSUM FOR 51 LOCS

COLLDUMP OBC,ENB - Collect OBC Dump Data (CCIL Unique)

Description
This initiates an automatic collection of the telemetered dump data.
When the collection ;s complete, notification is given via the event
printer. This directive assumes that the telemetry format supports
the OBC dump data.

Format

COLLDUMP OBC,ENB

Example

COLLDUMP CLEAR / CLEAR DUMP AREA

COLLDUMP OBC,ENB / PROCESS OBC DUMP DATA

SET RECQUAL,OBC - Reconstruct OBC Dump (CCIL Unique)

Description
This directive reconstructs the collected OBC Dump. RECQUAL specifies
the quality of minor frames to be used in the reconstruction.

6-12

Format
SET RECQUAl,OBC,a
where a = an expression that evaluates to an integer number (1,2,3,4),

whose value specifies the reconstruction criteria as listed
below:

1. 	 Use all good and questionable minor frames.
2. 	 Use only good and questionable minor frames whose hammi ng

codes are valid.
3. 	 Use only good and questionable minor frames whose sync

patterns are correct.
4. 	 Use only good and questionable minor frames whose hammi ng

codes are valid and whose sync patterns are correct.

Example

SET RECQUAl,OBC,4 / USE BEST POSSIBLE DATA

OBCRECON - Construct Best Dump Copy (CCIl Unique)

Description

This directive constructs the best copy of the dumped memory bank

from the collected dump data. OBCRECON also assigns a quality indi

cator to each best copy data word, based on the SET RECQUAl,OBC

specification. The quality indicator may be GOOD, BAD, or MISSING.

The reconstructed memory bank is saved in the OBC Reconstructed Dump

Image File. Only the last reconstructed memory bank image is retained.

OBCRECON generates a COllDUMP CLEAR directive at its conclusion.

Format

OBCRECON a

where a = an expression that evaluates to the memory bank number

(0, 	1, or 2).

Example

OBCRECON 2 / RECONSTRUCT BANK 2

6-13

OBCCOMP - Compare Load and Dump Files

Description
This directive compares the Reconstructed Dump Image file locations
with the corresponding Master Image file locations. Non-compared
values are printed on the event printer.

Format
OBCCOMP a,b<,ALL>
where a = an expression that evaluates to the starting location to

be compared.
b = an expression that evaluates to the ending location to

be compared. la l and Ib l must be ascending and must be
contained in the same bank. Therefore, for bank ~, la l

and Ib' range from 0 to 4095 inclusive; for bank 1, from
4096 to 8191 inclusive; and, for bank 2, from 8192 to 12287
inclusive.

ALL = an option to compare both static and dynamic data words.
Default is to compare to only static data words.

Example
OBCCOMP 0'10000 1 ,0'17777 1 / COMPARE BANK 1

OBCCOPY - Transfer Dump Image to Master Image

Description
The OBCCOPY directive will copy the OBC Reconstructed Dump Image file
into one of three parts of the OBC Master Image. OBCCOPY does not
update the aBC Master Image file header information for the memory
bank.

6-14

Format
OBCCOPY <a>
where no argument = copy to memory bank specified in Reconstructed

Dump Image file, or
where a = an expression which evaluates to the OBC Master

Image memory bank number
= ~, 1, or 2.

DATA BLOCK BUILDING

OBCSEQ - Start OBC Sequence Build

Description
The OBCSEQ directive begins the compilation of an OBC command sequence
used in some specific OBC data blocks (14 and 17). After execution of
OBCSEQ, all following command requests are entered into an OBC command
sequence table, until an OBCEND function is encountered. Relative tim
ing between commands may be specified with the OBCWAIT function. When
the OBC sequence is completely defined~ it is available for inclusion
in an OBC data block. It cannot, however, be executed in a direct
manner. OBCSEQ clears any previous sequence that has been built.

Format

OBCSEQ

Example

See combined example following OBCWAIT function.

6-15

aBCEND 	 - Stop aBC Sequence Build

Description
The aBC END directive defines the end of the aBC command seqllence compila

tion. See aBCSEQ for further detail.

Format

aBC END

Example

See combined example following the aBCWAIT function.

aBCWAIT - Specify aBC Sequence Wait Time

Description

The aBCWAIT directive specifies a time delay between commands in an

aBC command sequence compilation. See aBCSEQ for further detail.

This directive can only be used between aBCSEQ and aBCEND directives.

Format

aBCWAIT a

where a = an expression evaluating to an integer number specifying

number 	 of tenths of seconds (actually 102.4 msec).
Max = 65535.

Example
For building data block 14:
OBCSEQ
:SIMODE EX,WLC / EXPOSE WITH WL CAL
OBCWAIT 36000 / EXPOSE 1 HOUR
:SIMODE STBY / GO TO STANDBY
OBCEND

6-16

For building data block 17:

OBCSEQ

: IMP 5

:CRU ON,I,16,17,18

OBCWAIT 10 / WAIT 1 SECOND

: IMP 6

OBCEND

BSEQDB - Build Commanding Data Block (17)

Description
The BSEQDB directive creates a data block, in a configuration as
required for the specified DB, from the OBC command sequence buffer
and writes it to the DB file. The BSEQDB directive will abort pro
cessing and return an error message if no commands, or more than eight
commands, are in the OBCSEQ buffer.

Format
BSEQDB a
where a = an expression evaluating to an integer number (0-32)

representing the data block to be generated.

Example

OBCSEQ

:IMP 5

:CRU ON,1,16,17,18

OBCWAIT 10 / WAIT 1 SECOND

:IMP 6

OBCEND

BSEQDB 17 / BUILD DB-17

:OBC LDBLK,17 / LOAD DB-17

6-17

OBCDB14 - Build Data Block 14

Description

The OBCDB14 directive creates data block 14 from the input arguments

and the contents of the OBCSEQ buffer, and then writes the block to

the DB file. OBCDB14 will examine the OBCSEQ buffer to verify that

a proper command sequence exists. That is, it must be a two-command

sequence with the serial command address corresponding to the camera

mode control command for the selected camera 10.

Format

OBCDB14 a<,b,c,d>

where a = the 10 for one of the four cameras, being either SWR, SWP,

LWR, or LWP, and;
b,c,d = one or more of the three DB-14 identifiers FESMTR (FES

switch on), MODEXP (time tag alter), and CALLON (cal lamp
on). If an identifier is not mentioned, then its corres
ponding DB bit ;s set to zero.

Example

OBCSEQ

:SIMODE EX,WLC / EXPOSE WITH WL CAL

:OBCWAIT 36000 / EXPOSE 1 HOUR

:SIMODE STBY / GO TO STANDBY

OBCEND

OBCDB14 SWR,CALLON / BUILD DATA BLOCK

:OBC LDBLK,14 / LOAD DB-14

6-18

BPARDB - Build Parameter Set Data Block (12,13,16)

Description

The BPARDB directive creates a data block by transferring the 18 least

significant bits of each word of a specified array into the DB file.

Global arrays have been created for OBiS 12, FRM(32); 13, PADD(6);

and 16, TTACHR(4). Data is entered into the arrays by simple assign

ment statements.

Format

BPARDB a,b,c

where a = data block number (0-32),

b = name labeling start of data words to be used,
c = number of data words to be used (1-32).

Example

/ BUILD DATA BLOCK 12 TO TELEMETER FRAMES 4 AND 5

INTEGER IDBG(32)

IDBG(1)=4

IDBG(2)=5

DO LOOP K=3,32

LOOP IDBG(K)=-1

BPARDB 12,IDBG,32 / WRITE DB 12 TO FILE

:OBC LDBLK,12 / LOAD DB 12

WAIT / PERFORM TESTS

BPARDB 12,FRM,32 / REWRITE NORMAL DB 12 TO FILE

:OBC LDBLK,12 / LOAD DB 12

OBCDB10 - Build Data Block 10

Description
The OBCDB10 directive creates DB 10 by transferring the assigned values
of the DB variables to the DB file. All assignments are done before
OBCDB10 is called. Only those fields which are specified by the argu
ment list of OBCDB10 are set when the directive is called. All fields

6-19

not specifically mentioned, whether or not they have assigned values,
are set to zero.

Format
OBCDB10 a<,b,c ... ,z>
where a - z = named global variables associated with DB-1~. Refer to

tabl e 6-2.

Example

/ DO PITCH SLEW AND CAPTURE IN LO GAIN, RAW GYRO

MBO=~;MDO=l;MEO=@;MJO=l;MK=@

SAC0=@.5 / 30 DEGREE SLEW
OBCDB10 MBO,MCO,MOO,MEO,MJO,MK,SAC0
:OBC LDBLK,10 / LOAD DB 1~

OBCLDBLK - Load I&T Data Blocks

Description
The OBCLDBLK directive loads I&T generated data blocks into the data
base.

Format
OBCLDBLK <a, ... ,z>
where no argument = load all data blocks 0 thru 9, 18, and 19, or

where a thru z = an expression which evaluates to a data block
number in the ranges of 0 to 9 and 18 to 19.

Example
OBCLDBLK 1,5,18 / LOAD DATA BLOCKS 1, 5, AND 18

6-20

mailto:SAC0=@.5

Table 6-2. OBCDB10 Parameters

Parameter Value

Mode 1 - Pitch 	 MB0 1

0
MC0 1

0
MD0 1

0
ME0 1

0
MJ0 1

0
MA 1

0
MK 	 0

1
2
3

SAC0 >-2/<2
IMX0 >0/<218

BG0 >_2- 14/<2-14

Mode 2 - Yaw 	 MB1
MC1
MOl
MEl
MJ1
SACl
IMX1
BG1

6-21

Description

Kalman Filter

Raw
Gyro & FES Filter
Gyro
Slew Control Mode
Hold
Hi gh Ga in
Low Gain
Read Slew Command
Don1t Read
Atti tude With OBC

Gyro Trim

None Trim
Ground Control
Flight 1st
Flight Later
Slew-Angle Rad Slew
Itera ti ons for Rate
Gyro Drift, rad/sec

All same description
as 10 1 parameters for
Mode 1

Table 6-2. OBCDB10 Parameters (Continued)

Parameter Value Description

Mode 3 - Roll 	 MB2 All same description

MC2 as 10 1 pa rameters for
MD2 Mode 1
ME2
MJ2
SAC2
IMX2
BG2

Mode 4 - Roll MF 1 Refine Wheel Bias

0 Don1t
MG3 1 Add Pitch Wheel Bias

QJ Don1t
MG2 1 Add Yaw Wheel Bias

0 Don1t
MGl 1 Add Roll Wheel Bias

0 Don1t

MG0 1 Read Add Wheel Bias

0 Don1t

ML 	 0 Disable FES
1 Disable Process
2 Ena b 1 e
3 Auto

6-22

SECTION 7. VARIABLE ADDRESS MEMORY (VAM) DIRECTIVES

SECTION 7. VARIABLE ADDRESS MEMORY (VAM) DIRECTIVES

COMMANDS

:VAM - Load VAM (CCIL Unique)

Description
Loads a specified VAM Format Group into the Variable Address Memory
(VAM) in the DMU. Selection of one of two redundant command paths
is accomplished by issuing the SW DMU,a directive. Updates the VAM
Master Image file if all commands are successfully transmitted.

Format
:VAM a
where a = name of a format which resides in the VAM library.

Example
SET DECODER,l / SWITCH TO COMMAND DECODER 1
XVAM=l / ENABLE VAM LOAD
:DMU / TRANSMIT
:VAM LWPVAM / LOAD NORMAL CAMERA FORMAT INTO VAM

PROCESSING

COLLDUMP VAM,ENB - Collect Dump Data (CCIL Unique)

Description
This directive initiates the collection of telemetry data for a VA~ dump.

Format
COLLDUMP VAM,ENB

Example

COLLDUMP CLEAR / CLEAR DUMP AREA

COLLDUMP VAM,ENB / PROCESS VAM DUMP DATA

7-1

........

SET RECQUAl,VAM - Reconstruct Dump (CCIl Unique)

Description
This directive sets the criteria for reconstruction of the collected
VAM dump.

Format
SET RECQUAl,VAM,a
where a = an expression that evaluates to an integer number specifying

the reconstructed criteria:

= 1

for use only good and questionable minor frames;

= 2

for use only good and questionable minor frames whose hamming
codes are valid;

= 3

for use only good and questionable mino~ frames whose sync
patterns are correct.

= 4
for use only good and questionable minor frames whose hamming
codes are valid and whose sync patterns are correct.

VAMRECON - Construct Best Image (CCIl Unigue)

Description
The VAMRECON directive constructs the best copy of the VAM from the
collected dump data. VAMRECON also assigns a quality indicator to
each best copy data word. The quality indicator may be GOOD, BAD or
MISSING, as specified by the SET RECQUAl,VAM directive. RECQUAl
specifies the quality of minor frames to be used in the reconstruction.
The reconstructed VAM is saved in the VAM Reconstructed Dump Image
Data Base Group. Only the last reconstructed VAM is retained.
VAMRECON generates a COllDUMP CLEAR directive at its conclusion.

Format

VAMRECON

7-2

VAMCOMP - Compare load and Dump Files (CCIl Unique)

Description

This directive compares the reconstructed VAM with the specified VAM.

Format

VAMCOMP a

where a = either:

= name of a VAM format (PPR) contained in the VAM Format Data
Base Group.

= OBCMASTR
master OBC VAM contained in the VAM Master Image Data Base
Group.

= 	TLMMASTR
master telemetry VAM contained in the VAM Master Image Data
Base Group.

VAMPRT - Print VAM Images (CCIl Unique)

Description
This directive is to print the VAM Format Data Base Group, the VAM Master
Image Data Base Group or the VAM Reconstructed Dump Image Data Base Group.

Format

VAMPRT a

where a = either:

= the name of a VAM format (PPR) contained in the VAM Format Data
Base Group.

= OBCMASTR
the master OBC VAM contained in the VAM Master Image Data Base
Group.

= 	TlMMASTR
the master telemetry VAM contained in the VAM Master Image Data
Base Group.

7-3

= VAMDUMP
the Reconstructed Dump Image contained in the VAM Recon
structed Dump Image Data Base Group.

SWITCH - Generate VAM Decom Tables

Description
This directive generates the VAM decommutation table from the specified
VAM. The decommutated tables are stored in the Main Decommutation Table
Data Base Group. The telemetry format (ROM or VAM) to be used is specified
by the DMU directive.

Format

SWITCH a

where a = either:

= the name of a VAM format (PPR) contained in the VAM Format
Da ta Base Group.

= TLMMASTR
the master telemetry VAM contained in the VAM Master Image
Da ta Base Group.

VAMCOPY - Transfer Dump Image to Master Image

Description
The VAMCOPY directive will copy the VAM Reconstructed Dump Image
into one of two parts of the VAM Master Image.

Format
VAMCOPY <a>
where no argument = copy to the image specified in Reconstructed

Dump Image file, or
where a = OBCMASTR

for copy into master OBC VAM Image
= TLMMASTR

for copy into master telemetry VAM Image.

Example
VAMCOPY TLMMASTR / COpy VAM DUMP TO TLM VAM

7-4

SECTION 8. DATA PROCESSING DIRECTIVES

--

SECTION 8. DATA PROCESSING DIRECTIVES

TELEMETRY

SET TLMIN - Select Input Stream (CCIl Unique)

Description
At system initialization time, both the THS and the OOPS telemetry
input device handlers are started. However, neither processor
attempts to load any input data into telemetry buffers until the
user specifies which stream is to be used. Only one stream may
be acquired at any time. This directive selects the appropriate
stream.

Format
SET TLMIN,a,b
where a = either:

= THS
for addressing the data arriving through the telemetry
handling system hardware (direct link); or

= OOPS
for addressing the data arriving through the NASCOM
network lines.

b 	= either:
= 	ON

for indicating that the specified stream is to be used
to load telemetry buffers. The opposite stream will be
turned off; or

= OFF
for indicating that the specified stream is not to be

used.

Example
SET TLMIN,THS,ON

8-1

SET BUFFACT - Select Buffer Size (CCIL Unique)

Description
The telemetry is grouped into a buffer containing some number of
minor frames. The buffer is filled before any data is decommuted
and presented to the system. The following directive alters that
buffer size.

Format
SET BUFFACT,a
where a = an expression that evaluates to the power of two which

is the number of minor frames to accumulate on one buffer.
This expression will be evaluated to between zero and six.

Example

SET BUFFACT,5 / BUFFER 32 MINOR FRAMES

SET MFFORMAT - Select Decommutation Format (CCIL Unique)

Description
This directive forces the decommutation of all telemetry minor frames
passing the user data quality test to the prescribed format. The
last five designators override any indicators of format on the telemetry
stream. The AUTO keyword is used to return to automatic format
determination algorithm.

Format

SET MFFORMAT,a

where a = one of the following:

AUTO

FMTIA

FMTIB

8-2

FMT2A

FMT2B

VAM

Example

SET MFFORMAT,VAM / PROCESS VAM FORMAT

SET MFQUAl - Specify Quality Checks (CCIl Unique)

Description
This directive alters the bits used by telemetry acquisition (see
table 8-1) to judge the quality of minor frame data. Two executions
of the SET MFQUAl directive are needed to setup the quality check.

Fonnat

SET MFQUAl,a,b

where a = either:

= GOOD, or
= DONTCARE.

b = either:
= if following GOOD, an expression specifying those bits that

must be one for the quality to be good, or
= if following DONTCARE, an expression specifying those bits

that are to be checked.

Example

SET MFQUAl,DONTCARE,2,4,6,8,10,12 / CHECK BITS

SET MFQUAl,GOOD,4,8,12 / CHECK FOR ONES

SET TlMDISP - Select Update Cycle (CCIl Unique)

Description
This directive sets the number of telemetry cycles between the update
of all changed values found on the telemetry stream.

8-3

Table 8-1. Telemetry Quality Flags*

a:.,. C"'lIII N :E uco 0 :E :E :E... I-C"'l" CQ U~ ~ ~ ~ ~ ~ ~ wI ... 0 a: w:E« 0
W ...J...J ...J ...J ...J ...J ...J...J X X :EN CQ u.0 :E :EU 0 0 u U

u. u. u. u. u. u. u. 0en en w CQen en 0 u U I ~ w CQU I Z

4 3 2 0 9 8 7 6 5 4 3 2 0 9 8 7 6 . 5 4 3 2

2

BIT

1 BCE - SET IF BLOCK CODE ERROR DETECTED (HAMING CODE)

2 BFR - SET IF BIT SYNC OR FRAME SYNC IN REMOTE MODE

3 ECMCR - SET IF ECMC IN REMOTE MODE

4 NM - SET IF ECMC IN NORMAL MODE (NOT CONVOLVED)

5 TM - SET IF ECMC IN THROUGHPUT MODE OR OOPS INPUT IN THROUGHPUT MODE

6 CBO - SET IF THS BUFFER HAS OVERFLOWED
7 EMTM - SET IF ECMC OPERATING ON TEST MODE

8-9 T21, T20 -INDICATES WHICH ECMC TEST IS BEING PERFORMED
10 CX1M - SET OF ECMC IN CONVOLVED MODE - HARD DECISION
11 CX3M - SET IF ECMC IN CONVOLVED MODE - SOFT DECISION
12 QL - SET IF SEQUENTIAL DECODER OUTPUT QUICK LOOK DATA
13 SEC - SET IF SEQUENTIAL DECODER SUCCESSFULLY OUTPUT DATA
14 SDE - SET IF SEQUENTIAL DECODER DETECTED AN IRRECOVERABLE ERROR
15 SDTM -
16 SDBO -
17 FLG1 -
18 FLG2 -
19 FLG3 -
20 FLG4 -
21 FLG5 -
22 FLG7 -
23 FLG8

SET IF SEQUENTJAL DECODER IN TEST MODE
SET IF SEQUENTIAL DECODER BUFFER OVERFLOWS
SET IF DATA IS BEING INPUT TO THE BIT SYNC
SET I F BIT SYNC IS LOCKED ONTO DATA
SET IF FRAME SYNC DETECTS AN ERROR
SET IF BIT SLIP DETECTED IN FRAME SYNC
SET IF PRECEEDING FRAME WAS NOT TRANSFERRED DUE TO FRAME SYNC LOSS
SET IF TOO MANY FRAME SYNC PATTERN ERRORS WERE DETECTED
SET IF FRAME SYNC IS LOCKED ONTO DATA

24 SCA - SET IF DATA INVERSION IS BEING PERFORMED

*Reprinted from Computer Science Corporation 'Control Center Software
System Operations Manual" (CSC/SO-76/6055, 1M 1-76-109).

8-4

Format
SET TLMDISP,a
where a = an expression that evaluates the number of telemetry cycles

between display updates. 0<a<7.

Example

SET TLMDISP,3 / UPDATE EVERY 3 CYCLES

SET MFSTATIC - Select 'No Update ' Limit (CCIL Unique)

Description
This directive resets the static sampling value. The determination of
static data is based on a count of the number of minor frames between
the acquisition of a sample. If a value for a data point is not received
in the proper number of frames, it is classified static. Since the noti
fication of static values is sent to the display system, small values of
the static update cycle at high bit rates can be detrimental to system
throughput.

Format
SET MFSTATIC,a
where a = an expression which evaluates to an integer denoting the power

of two of the number of minor frames between static value deter
minations, 1<a~10; or

= ~
for no static tag updating.

Example
SET MFSTATIC,5 / CLASSIFY 32 FRAMES AS STATIC

Note: Setting MFSTATIC less than BUFFACT has no meaning since the minimum
value for MFSTATIC will be BUFFACT minor frames, unless it is a 0.

8-5

SET THS - Select THS Processing Mode (CCIl Unique)

Description
This directive controls the parameters sent to the THS at the occurrence
of the next error interrupt. The keywords setting up the type of decoding
to be performed are mutually exclusive. When NORM is set, it overrides
any setting and vice versa. The default value is NORM,RATE,40.
Note that the THS setup parameters are not sent to the THS until an error
interrupt is detected. A simulated interrupt can be triggered by the
directive SET THS.

Format

SET THS <,a>

where no argument = a simulated error interrupt, or
where a = either:

= RATE,b
Permits the input of the bit rate to which the THS will be
setup when the next error interrupt is signaled. Valid
values for the Ib l are 80, 40, 20, 10, 5, 2.5, and 1.25.
The directive accepts any valid expression and assigns the
bit rate that most closely matches the values mentioned
above.

= THRU
Set the throughput mode of THS processing.

= NORM
Reset convolved data operations to handle unconvolved data.

= HCONV
Use hard convolved algorithm for decoding convolved data.

= SCONV
Use soft convolved algorithm for decoding convolved data.

Example
SET THS,RATE,2.5

8-6

SET DDPS,RATE Select DDPS Rate Parameter

Description
The SET DDPS,RATE directive selects the telemetry rate for data
arriving through the NASCOM lines.

Format
SET DDPS,RATE,a
where a = an expression evaluating to the selected bit rate.

Valid values for la l are 80, 40, 20, 10, 5, 2.5, and 1.25.

Example
SET DDPS,RATE,40 / SELECT 40KB RATE

COllDUMP - Select Raw Buffer Storage (CCIl Unigue)

Description
This directive is used for collecting telemetry containing OBC dumps,
VAM dumps, FES images, and spectrographic images. Data collected by
the telemetry processor is maintained in a file as raw telemetry
bulk buffers which are stored for later processing.

Format

COllDUMP a,b,c,ENB

where a = either:

= CLEAR
for clearing dump area;

= OBC
indicating that an OBC dump is expected;

= FES
indicating that an FES image is expected;

= VAM
indicating that a VAM dump is expected;

= SPEC
indicating that a spectrographic image is expected.

8-7

b = Optional expression evaluating to the minimum number of
minor frames to collect. If not specified, this value
defaults to 812 for OBC, 1000 for FES, 640 for VAM, and
1000 for SPEC.

c 	= either:

= FMT1A

= FMTIB

= FMT2A

= FMT2B

= VAM
Optional keyword specifying the format on which the telemetry
data is co11ected~ No format switching is performed by this
directive; however, if the telemetry data is not in the speci
fied format, an error message is printed. If not specified,
the data is collected regardless of format.

ENB = Enable the dump. Lack of this parameter leaves dump
unenab1ed. It then must be enabled by a command.

Example
COLLDUMP OBC,812,FMT1A,ENB

CRT OUTPUT

DISPLAY - Transfer Information to CRT (CCIL Unique)

Description
This directive causes the display of expressions to the CRT screen which
executed it. Either the EVENT or DBASEB page should be selected to ensure
that the data will remain on the screen long enough to review. It simul
taneously causes a print of the data on the event printer.

8-8

Format

DISPLAY a<,b, ... ,z>

where a,b, ... ,z = a valid CCIl expression that evaluates to an integer,

a floating point result, or a quoted text string.
The values and text strings are displayed in the
appropriate form by type.

Example

DISPLAY ARG(1),AF(3)

PAGE - Bring Canned Page to CRT (CCIl Unigue)

Description
This directive causes the system to display the requested CRT page
on the specified console. See appendix A for page names.

Format

PAGE a<,b>

where a = name of existing page.

b = expression that evaluates to the console number to which the
page is being assigned. 1<b<8

If 'b ' is not specified, the page will be displayed at the requesting
console.
If 'b ' is out of range, the message "NONEXISTENT CONSOLE" is displayed.

Example
PAGE DBASEB,3 / PUT BLANK PAGE ON CONSOLE 3

FREEZE - Inhibit CRT Update (CCIl Unique)

Description
This directive inhibits updates to any data on the CRT screen of the
requesting console.

Format

FREEZE

8-9

UNFREEZE - Permit CRT Update (CCIL Unique)

Description
This directive reinitiates the update of data on the CRT screen of the
requesting console.

Format

UNFREEZE

PRINTER OUTPUT

Description

The Sigma 5 computer has two line printers. One printer will be used
as an Event Printer (EP) (i.e., events will be documented and monitored
to chart the systems progress). The second printer will be used for
CRT page shapshots and by programs running in the background.

DISPLAY - Transfer Information To Printer (CCIL Unique)

Description

This directive causes the printing of expressions on the event printer.

It simultaneously causes the same data to be displayed on the requesting

CRT.

Format

DISPLAYa<,b, ... ,z>

where a,b, ... ,z = a valid CCIl expression that evaluates to an integer,

a floating point result, or a quoted text string.
The values and the text strings are displayed in the
appropriate form by type.

Example

DISPLAY TEMP,RATE(3)/2

8-10

SNAP VIRTUAL - Transfer Canned Page To Printer (CCIl Unique)

Description
This directive causes a print (snapshot) of a named page, that mayor
may not be currently displayed, to be made on a line printer. See
appendix A for page names.

Format
SNAP VIRTUAl,a
where a = the page name to be snapped on the line printer.

Example
SNAP VIRTUAl,MANTMll

SNAP CONSOLE - Transfer CRT

Description

/ PRINT MANEUVER TIMElINE

Image To Printer (CCIl Unique)

This directive causes a print (shapshot) of a currently displayed page
to be made on the line printer.

Format
SNAP CONSOlE<,a>
where no argument = print page from requesting CRT, or
where a = the CRT number whose page is to be printed on the line printer.

Example

SNAP CONSOlE,8 / PRINT CONSOLE 8 PAGE

SET SPOOL - Select Printer for SNApls (CCIl Unique)

Description
This directive alters the printer on which snaps are printed for an
individual console. By default, all snap information is output on
the high-speed printer (Pl).

8-11

Format
SET SPOOL,a
where a = PI

for the high-speed printer, and
= P2

for the low-speed printer.

Example
SET SPOOL,Pl / DIRECT SNAPS TO HI-SPEED PRINTER

TOP - Top of Page, Low Speed Printer

Description

This directive causes the event printer to skip to top-of-form.

Format

TOP

STRIPCHART OUTPUT

Two methods, or modes, of stripcharting telemetry data are available - REALTIME

and DELAYED. The two modes cannot be mixed.

The REALTIME, or near-real-time, stripcharting facility retrieves up to 1
byte of data for each of 32 stripchart pens at a rate not exceeding 4~

times per second . The data 15 extracted directly from the telemetry minor
frames; no conversion or scaling of data is performed. The data to be sent
to the stripchart must be specified by minor frame byte position counting
from zero to 127. Both maincom and subcom data can be specified. At most,
one pen may be assigned to a telemetry data byte as a maincom sample. If a
maincom byte is to be assigned to more than one pen it must be described as
a subcom assignment that cycles every minor frame (see SUBC paragraph).

*The bulk of the stripchart introductory material is taken verbatim from
Computer Sciences Corporation "Control Center Software System Operations
Manual I (CSC/SD-76/6055, 1M 1-76-109).

8-12

For status pens, the sampled location is specified by the byte offset of
the sample and further modified by a bit number that ranges from 0 through
7 specifying the rightmost and leftmost bits, respectively. The bit number
is optional in all cases and defaults to zero (the rightmost bit) if not
specified on a status pen assignment.

The nature of the stripcharting algorithm causes the data output to be
delayed (see table 8-2) by the time necessary for a telemetry buffer to be
filled. This time is dependent upon the telemetry bulk buffer size (see
SET BUFFACT) and the bit rate (see SET THS/DDPS,RATE). Upon initiation of
the stripchart pens, no output is produced until this time period has
expired.

The stripcharting algorithms attempt to track buffer factor changes. However,

due to the differing buffer sizes of the collected data, the output may not
track all changes exactly. No attempt is made to track dynamic bit rate
changes. If the bit rate is changed, the stripcharts must be stopped and
restarted.

The delayed mode allows retrieval and scaling of decommutated telemetry
points. The user specifies the data to be charted by telemetry point name.
The options of selecting raw counts or engineering units and of specifying
the desired scale is also available.

The output to the pens in this mode ;s dependent on the TLMDISP parameter.
This parameter controls the number of telemetry cycles between delayed-mode
stripchart output as well as between display updates. Thus, telemetry buffer
size and bit rate changes effect only the rate at which data is output to
the pens. The pens need not be stopped and restarted during these changes.

8-13

Table 8-2. Stripchart Delay Time (Milleseconds)*

BIT RATE/1000 BITS/SECOND

1.25 2.5 5 10 20 40

2

4
Z

a:;;a:
Ow~
z~u. 8
-4:::::l
~a:al

u.

16

32

64

:: ::::;:
::::::%(.

51 :::819 :}O~· " 02.r~ro" :.:.:,::::':.:.:.:.,.:.

1638 819 ::.29.!{. ~ ~.~9. ·L9:~ .. ::::::j,\. :
:...:;:::::.'

819 .41~ :3277 1638 i)~;#';., }~~::.:
:::::

:;::::..
{ ::}" '.)!, :;8196554 3277 1638 ' :~\n:

-;X ':':':.

.~fcr .13107 6554 3277 1638 819

26214 13107 6554 3277 1638 819

52429 26214 13107 6554 3277 1638

SYSTEM UNABLE TO

SUPPORT THIS

THROUGHPUT RATE

UNSURE WHETHER

THIS RATE CAN BE

SUPPORTED

*Reprinted from Computer Sciences Corporation "Control Center Software System

Operations ~1anual' (CSC/50-76/6055, IM I-76-109).

8-14

Stripchart pens are addressed by pen number. These numbers and their
locations on the Stripchart Recorders (SCR) are:

Pen Number Pen Type location
1-8 Analog Pen 1 is leftmost analog pen on

the left recorder

9-16 Analog Pen 9 is leftmost analog pen on
the right recorder

17-24 Status Pen 17 is leftmost status pen

on the left recorder

25-32 Status Pen 25 is leftmost status pen

on the right recorder

PEN ON - Activate Pen (CCIl Unigue)

Description

The PEN ON directive starts the output of data, specified in the

current pen assignment matrix, to the selected pens.

Forma t

PEN ON<,a>

where no argument = activate all pens, or

where a = expression evaluating to a pen number that should be activated.

Exampl e

PEN ON,8 / START PEN 8

8-15

PEN OFF - Deactivate Pen (CCIL Unique)

Description

The PEN OFF directive stops the output of data to the specified pens.

Format

PEN OFF<,a>

where no argument = deactivate all pens, or

where a = an expression that evaluates to a pen number that

should be deactivated.

Example

PEN OFF / STOP ALL PENS

PEN CAL - Set Pen Calibration Value (CCIL Unigue)

Description
The PEN CAL directive allows each pen to be individually calibrated
by setting a specified value in the stripchart output list. For
calibration, the stripchart mechanism must be on and the particular
pen must either be unassigned or turned off.

Format
PEN CAL,a,b
where a = expression evaluating to the pen number to be calibrated.

b = expression evaluating to the value to be placed on the pen
specified. For analog pens, this value may range from 0
through 255. For status pens, the rightmost bit of the
resulting value is placed on the status pen.

Example

PEN CAL,17,1

8-16

PEN CLEAR - Clear Pen Assignment Matrix (CCIl Unique)

Description
Ths PEN CLEAR directive will clear the pen assignment matrix, there
fore, removing cell data to the pens, setting all output values to
zero. The directive may be employed at any time during stripchart
setup or operation.

Format

PEN CLEAR / CLEAR PEN MATRIX

PEN SAVE - Store Pen Assignments (CCIl Unigue)

Description
The PEN SAVE directive saves the current pen assignment matrix for
future use. Up to twelve matrices can be saved.

Forma t
PEN SAVE,a<,b>
where a = slot in which matrix is to be stored (1-12).

b = optional text to identify matrix. Text must be contained
within single quote marks and may not exceed 40 characters.

Example
PEN SAVE,5,'FES ACQUISITION'

EXAMINE PENMATRX - Display Stored Pen Assignments (CCIl Unigue)

Description
The EXAMINE PENMATRX directive will display the optional text stored
with the PEN SAVE directive, along with the slot used.

Format

EXAMINE PENMATRX

8-17

----~

PEN RESTORE - Copy Stored Pen Assignment to Pen Matrix (CCIL Unique)

Description

The PEN RESTORE directive will transfer a set of stored pen assign

ments to the current pen assignment matrix.

Format

PEN RESTORE,a

where a = slot number of desired assignment.

Example

PEN RESTORE,S / ASSIGN FES MATRIX

PEN MODE,REALTIME - Set Stripcharting to Realtime Mode (CCIL Unique)

Description
The PEN MODE,REALTIME directive clears the pen assignment matrix, turns
off all pens, and sets the mode to realtime. The PEN MAIN and PEN SUBC
directives are then the only legal pen assignment directives.

Format

PEN MODE,REALTIME

PEN MAIN - Assign REALTIME Maincom or Supercom (Cell Unique)

Description
This directive sets up the minor frame byte to pen mapping for maincom
and supercom telemetry samples. A maincom telemetry sample is a tele
metered item that appears in the same place in the telemetry minor
frame for each minor frame received. A supercom telemetry sample is
a telemetered item that appears in more than one location per minor
frame and is repeated in these same locations for each minor frame.

8-18

Format

PEN MAIN,a,m, ... ,t<,z>

where a = an expression that evaluates to the pen number to be assigned.

m - t =	either:
an expression that evaluates to the minor frame byte offset
containing the sample or a set of expressions w, x, and y where:

w = an integer that specifies the number of times that the pattern
to follow is to be applied.

x = an expression that evaluates to the first minor frame byte
offset containing the sample.

y = an expression that evaluates to the number of minor frame
bytes between samples.

z = an expression which evaluates to a bit number that modifies
the sampling for status pens, if not specified, zero, indi
cating the rightmost bit (i.e., number of bit in word).

Example

See example following PEN SUBC.

PEN SUBC - Assign REALTIME Subcom (CCIl Unique)

Description

This directive specifies the pen mapping for subcom data, the location

of minor frame, and the byte offset. A subcom telemetry sample is a

telemetry item that appears in a fixed location in a minor frame each

Inl minor frames, where Inl is a power of two.

Format

PEN SUBC,a,b,c,d,<,e>

where a = an expression that evaluates to a pen to be assigned.

b = an expression that evaluates to the minor frame byte offset
of the sample.

c =an expression that evaluates to the smallest minor frame
counter of a minor frame containing the sample.

8-19

d = an expression that evaluates to the number of minor frames
between successive samples (Id l must be larger than IC I).

e = an expression that evaluates to the bit to be sampled for
status data. Default value is zero, the right-most bit.

Example

Suppose the following items were to be stripcharted.

1. 	 Minor frame counter, byte 60, maincom.
2. 	 Supercom values occurring at minor frame offsets 2, 4, 6,8, 17,

19, 21, 23.
3. 	 Subcom status point at offset 73 starting on minor frame 5 and

occurring every 32 minor frames.
PEN MODE,REAlTIME / CLEAR PEN MAPPING, SET MODE
PEN MAIN,I,(60) / MINOR FRAME COUNTER
PEN MAIN,2,(4(2,2),4(17,2)) / SUPERCOM A CCElB,BUSSV
PEN SUBC,17,73,5,32,5 / SUBCOM STATUS DATA FOR BIT 5
PEN ON / START STRIPCHARTS

PEN 	 MODE,DElAYED - Set Stripcharting to Delayed Mode (CCIl Unique)

Description
The PEN MODE,DELAYED directive clears the pen assignment matrix, turns
off all pens, and sets the mode to delayed. The PEN directive is then
the only legal pen assignment directive.

Format

PEN MODE,DELAYED

8-20

PEN - Assign Telemetry to SCR in Delayed Mode (CCIl Unique)

Description
The PEN directive allows stripchart assignment to be made by reference
to a named telemetry point (global variable). Three variations of the
PEN directive exists: One for charting raw analog counts, one for
converted engineering analog valves, and one for raw status counts.

Format
PEN a,b,RAW<,c,d>
where a = name of a telemetry global variable to be charted on an

analog pen.
b = analog pen number on which data is to be placed (1-16).

RAW = selective of raw telemetry counts for display, defaulting
to full pen deflection over the count range of 0 to 255.

c = optional modification of RAWls default to 0 counts for
minimum scale deflection.

d = optional modification of RAWls default to 255 count for
maximum scale deflection.

PEN a,b,ENG,c,d
where a = name of a telemetry global variable to be charted or an

analog pen.
b = analog pen number on which data is to be placed (1 to 16).

ENG = selection of engineering units for display.
c = value for minimum scale deflection.
d = value for maximum scale deflection.

8-21

PEN a,b
where a = name of a telemetry global variable to be charted on a status

pen. If a multi-digit variable is named, the rightmost bit
of the raw value (least significant bit) is charted.

b = status pen number on which data is to be placed (19 to 32).

Example
PEN MODE,DELAYED / CLEAR PEN MATRIX, SET DELAYED MODE
PEN ASICH00,1,RAW / CHART ASICH00,RAW,SCALE 0-255
PEN FORMAT,2,ENG,I,4 / CHART FORMAT, ENGINEERING

/ UNITS, SCALE 1-4
PEN MFC,3,RAW,I,64 / CHART MINOR FRAME COUNTER,

/ RAW, SCALE 1-64
PEN SADl,17 / SOLAR ARRAY DEPLOYMENT
PEN ON / START STRIPCHART OUTPUTS

8-22

APPENDIX A - PAGE NAMES

ACS Attitude Subsystem

ALARM Alarm Page

ASC2 Test Alarm Page

CAMEXPO Special Camera Page

CAM Camera Status, All Cameras

CAMl Camera 1 Status

CAM2 Camera 2 Status

CAM3 Camera 3 Status

CAM4 Camera 4 Status

COMANll Command Buffer, Page 1

COMAN2 Command Buffer, Page 2

DATBLKll Datablock 11

DBASEB Blank Page for Work Area

DOC Data Operations and Control

EVENT Event Page

FES FES1 and FES2 Status

HWSTATUS Hardware Status

HYDRSTAT HAPS System

lVIANSEP1 Unloaded Slews

MANSEP6 Loaded Slews

MANTMLNA Maneuver Time Line

MANTMLN1 Maneuver Time Line

MODESH Logic SH Mode

OBC Onboard Computer

OPSYSII OPSYS Status

PAGE List of Available Pages
. ' . ~

PRENUT Precession/Nutation

PWRSTAT Power Status

A-I

SISTAT

SPAVARXA

sYSTAT

sYSTATM

sYSTEMP

TL..'VICMD

TL1VlDBC

TLMPWR

Scientific Instruments Status

System Parameter Test Page

Systems/Transfer

Systems/Mission

All Spacecraft Temperatures

Telemetry and Command Subsystem

OBC Telemetry Buffer

Telemetry Information

A-2

