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Preface

This volume is intended for scientists and engineers with an interest in the processing of the Kepler science

data stream. The goal of this document is to describe the physical processes and instrumental characteristics

of the CCD data collected by Kepler, and the scientific processing applied to the measurements leading to

the detection and characterization of planets in the data set. In addition, the theoretical bases and rationale

are given for the non-pipeline software: target list management, the Quick Look software overview, the

management of the onboard data compression parameters, onboard cosmic ray detection parameters, and

End-To-End Model description. Finally, numerous appendices contain code and relevant derivations.
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Chapter 1

Introduction

The Kepler Mission is designed to characterize

the frequency of Earth-size planets in the habitable

zones of solar-like stars in the solar galactic neigh-

borhood. Kepler’s approach is to observe
�

100,000

main-sequence stars in a
�

100 square degree field of

view (FOV) centered on 70� galactic longitude, +5�
galactic latitude in the constellation named Cygnus.

As given in Table 1.1, there are about 200,000 main

sequence stars in Kepler’s FOV to mR=15.0. The

Stellar Classification Program (SCP) is underway

to identify these stars among the total of roughly

500,000 stars to that magnitude. Kepler will search

for evidence of transiting planets in the FOV by mon-

itoring the brightnesses of the chosen target stars. In

addition, Kepler will search for evidence of modula-

tion of stellar flux due to Close-in Extrasolar Giant

Planets (CEGPs).

Transiting planets exhibit drops in brightness pro-

portional to the ratio of the area of the planet to the

area of its parent star. An Earth-sized planet transit-

ing a solar-like star generates a transit depth of �80

ppm, and for a 1 AU orbit, each transit lasts as long

as 13 hours, depending on the exact inclination an-

gle. The transit of a Jupiter-sized planet in front of a

solar-like star, however, is �1% deep, since Jupiter’s

radius is about 0.1 times that of the Sun. CEGPs, like

HD209458, take only �3 hours to transit their stars.

Thus, in searching for transiting planets, Kepler is

interested in finding negative pulses lasting from a

few hours to as long as �16 hours (corresponding to

a central transit for a 2 AU orbit).

The signature of the reflected light component of

CEGPs is not as well-constrained as that of a tran-

siting planet. The detailed shape and amplitude of

the reflected light depend a great deal on the prop-

erties of the planet and its atmosphere, in particular,

the size of the planet and distance from the star. At-

mospheric composition and cloud structure are also

important. Nevertheless, the existing models pre-

dict that the reflected light component should have

a peak-to-peak amplitude of 20-100 ppm for Jovian-

sized planets within 0.1 AU. In searching for such

planets, Kepler will be seeking evidence of quasi-

sinusoidal signals with periods as long as 7 days.

Beyond this orbital range, the amplitude of the re-

flected light signature drops precipitously, since it is

inversely proportional to the square of orbital radius.

In order to detect such small signals, the photo-

metric precision of measurements must be exquisite

compared to that routinely obtained by ground-based

observations. The Combined Differential Photomet-

ric Precision (CDPP) for a G2V mR=12 star in the

FOV should be no more than 20 ppm, including stel-

lar variability. Moreover, the nature of the signals

Kepler seeks requires extensive observations. Kepler

will continuously image the FOV over its primary

mission of 4 years, and for as long as 6 years, if the

extended mission is approved.

The primary role of the Science Operations Center

(SOC) is to produce detrended normalized relative

flux time series for each target star, and to search

through these light curves for evidence of transit-

ing planets and/or modulation of reflected light by

CEGPs. The target stars are to be selected by the

Science Office (SO) using the Kepler Input Catalog

and additional relevant stellar catalogs. The origi-

nal data consists of pixels containing each target star

from the 42 CCDs in the focal plane of the photome-

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Modeled Number of Main-Sequence Stars in Kepler’s Field of View

Spectral Type Cumula-

mR B5 A5 F5 G5 K5 M5 All tive Sum

9.5 151 299 200 86 20 0 756 756

10.5 481 838 706 358 80 0 2463 3219

11.5 1002 2181 2248 1300 242 7 6979 10198

12.5 1832 5004 7037 4189 991 46 19098 29296

13.5 3051 10245 19796 13379 3271 167 49909 79205

14.5 4498 18142 51098 42035 10969 611 127353 206558

Total 11014 36708 81085 61347 15573 831 206558 ——

ter, together with collateral data to correct for sys-

tematic effects incurred in operating the CCDs, and

ancillary data comprised of a subset of engineering

data for parameters that may be used as diagnostics

or for identifying and correcting systematic effects in

the photometric data.

The original data are downlinked from the Kepler

spacecraft through the Deep Space Mission System

(DSMS) to the Mission Operations Center (MOC),

that performs completeness checking and formulates

re-transmit requests for data packets that are cor-

rupted or missing at the end of each pass. A SOC-

provided First Look Platform examines the photo-

metric data received during each pass and makes a

number of statistical checks to verify that the sci-

ence data meets requirements in terms of quality.

The results are reported to a web page accessible

by all Kepler elements. Complete photometric data

sets are transported to the Data Management Cen-

ter (DMC) at the Space Telescope Science Institute

(STScI), along with a subset of the engineering data

called ‘ancillary data’.

The DMC performs pixel-level calibrations, and

then passes the calibrated pixels on to the SOC where

the photometric light curves are extracted and the

planet searches are conducted. Almost all the stars

are to be sampled every 15 minutes, with individual

exposures co-added together within each 15-minute

block, with occasional Full Field Images (FFIs) be-

ing provided. A small subset of stars (512) will be

sampled at a much higher rate of 1 min−1. Co-I’s Ron

Gilliland (STScI) and Tim Brown (High Altitude

Observatory – HAO) will lead the effort to investi-

gate and study pressure mode (p-mode) oscillations

of bright target stars (
�

1012 e− month−1). These

‘short cadence’ targets will also be used for stars

identified with high SNR transits of giant planetary

companions, to enhance the science return for such

objects. In generating the calibrated light curves, the

SOC must specify the pixel level calibrations to be

performed at the DMC, and must develop software

to combine target star pixels together into raw fluxes,

and calibrate the stellar fluxes to remove systematic

effects such as residual spacecraft pointing offsets.

The calibrated stellar light curves will be archived

at the DMC for eventual release to the general com-

munity following the Data Release and Publication

Policy (KKPO-16001) adopted by the Kepler Mis-

sion. Any candidates identified by the search must be

validated by estimating the statistical confidence in

the detections, and the possibility that nearby, back-

ground variable stars could be the source of the pho-

tometric variations.

In addition to the science processing, the SOC

must carry out a number of tasks related to target

and photometer management. These include prepar-

ing target definitions for the photometer and speci-

fying other photometer operating parameters such as

integration time and focus position. While we do not

expect to exercise all of these options in the post-

commission phase, the SOC needs to provide the

tools and data analyses to support the SO in mak-

ing decisions regarding operations such as re-focus,

decontamination, and annealing the focal plane. The
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SOC also has the responsibility of tracking the actual

CDPP and estimating the theoretical CDPP for each

target star. The SOC must provide Huffman coding

tables for the onboard compression of the CCD pix-

els and be able to update these as necessary to main-

tain adequate compression rates for the Solid State

Recorder (SSR).

This Algorithm Theoretical Basis Document

(ATBD) can be broken into two main parts: pipeline

and non-pipeline processing.

The science pipeline processing details the steps

in processing the original data downlinked from the

spacecraft to generate calibrated stellar light curves.

This part includes the algorithms required to search

for planetary signatures in the light curves, and the

means used to validate any candidates using Kepler

Mission System (KMS) data from the spacecraft.

Many of the algorithms baselined for these tasks

have been developed and prototyped in the course

of pathfinder activities such as the Vulcan Camera

search for 51 Peg-like planets and the Kepler Tech

Demo. As such, the theoretical bases for many of

these algorithms have been published in several peer-

reviewed journal articles. Indeed, many of these al-

gorithms are in current use either as part of Vul-

can, the KTD or as part of simulation efforts such as

the End-To-End Model (ETEM), a MATLAB Monte

Carlo model of the Kepler photometer.

The second part of this ATBD describes the

methodology for developing algorithms to manage

the Target List and the Photometer. Tasks falling into

this category include monitoring and predicting the

CDPP, managing the Huffman compression tables,

selecting aperture masks for the target stars. Most of

these tasks have not been carried through to the point

of producing prototype software. Therefore, the de-

scription of these algorithms is more preliminary and

less specific than for the first part.



Part I

Science Pipeline Processing
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The organization of Part I is as follows: Chapter 2 presents a general, high-level overview of the pro-

cessing steps from photoelectrons to detecting transiting planets and CEGPs. Chapter 3 lists and discusses

the steps necessary to calibrate the original data set consisting of CCD pixel values transmitted from the

spacecraft. This includes black level subtraction, nonlinearity correction, flat field correction, smear and

dark subtraction, and background flux removal. Chapter 4 describes the process of extracting photometric

light curves from the calibrated pixel data set, including the tasks of forming photometric apertures, deter-

mining ensemble stars, and removing residual systematic errors. A one-dimensional example is provided.

This is followed by Chapter 5 which describes difference image analysis, a tool shown to provide excellent

performance for stellar photometry on time-series based data. Specific topics include mean image creation

and registration, PSF changes, difference images, false positive elimination, and hot pixel tracking. Chapter

6 presents an overview of detection theory with an emphasis on its application to detecting planets. Chapter

7 discusses the use of the DIARAD/SOHO data along with adaptive wavelet-based matched filters to de-

tect transit candidates. It addresses the assessment of statistical confidence levels via a bootstrap approach.

Chapter 8 specifically details the detection algorithms intended for use in identifying CEGPs by reflected

light. This chapter also provides sections detailing statistical tests to be used to establish confidence in the

candidates (i. e., rejecting false positives due to statistical fluctuations in the light curves). Part I concludes

with chapter 9. It covers the establishment of statistical confidence in detections, describes how centroids

can be used to reject confusion posed by background eclipsing binaries or variable stars, discusses the de-

velopment of crowding parameters, and breifly touches on the assessment of the physical parameters of a

detected planet.



Chapter 2

Overview of Science Processing

Figure 2.1 shows the primary activities to be car-

ried out in the Science Operations Center (SOC) and

the Data Management Center (DMC) during the Ke-

pler Mission. The tasks are broken into the following

parts: 1) Aperture Photometry, 2) Difference Image

Analysis, 3) Single Event Statistics / CDPP, 4) Tran-

siting Planet Search, and 5) Reflected Light Search.

The ATBD will concentrate on further defining and

providing theoretical support for those tasks.

Kepler’s focal plane is populated with 42 CCDs,

each of dimension 2200 columns by 1044 rows, with

27-�m wide pixels. Each pixel subtends �3.98 arc

seconds of sky on a side, and the point spread func-

tion (PSF) is approximately 5 pixels wide (at the

95% level), so that each star will illuminate approx-

imately 25 pixels. For design purposes, we assume

that 32 pixels will be specified per star on average,

and that the pixels will be co-added for 15 minutes

before being stored in the solid state recorder (SSR)

for downlink to Earth. A small number (512) of stars

will be sampled every minute, but this detail does not

radically alter the algorithms to be used in processing

the data. Although there are about 100 million pix-

els in the FOV, only the pixels of interest containing

target stars, or pixels that can be used to remove sys-

tematic errors, such as black level, smear and dark

current, and background flux are downlinked. Dur-

ing the first year of operation, �6 million pixels will

be downlinked for each 15 minute cadence.

Once the data arrive at the DMC, they are first cor-

rected at the pixel level for those systematic errors

that can be estimated directly from the CCD frames

themselves, such as black level (bias), dark current,

and the effects of shutterless readout (smear). The

SOC will identify and track hot and/or dead pixels

and perioidically providing updates to the DMC. The

remainder of the processing is conducted at the Sci-

ence Operations Center (SOC) at NASA Ames Re-

search Center in Moffett Field, California. Here we

will correct for background flux, extract photometric

light curves for each star, correct for residual system-

atic errors, and conduct searches for transiting plan-

ets and for the reflected light from Close-in Extraso-

lar Giant Planets (CEGPs).

Once candidates are identified, a series of statisti-

cal tests will be conducted to assess the confidence

level of each candidate, as well as to determine if

the planet-like photometric variations are due to a

nearby background eclipsing binary or variable star.

This latter test will be conducted by examining the

centroid time series for the candidates and correlat-

ing it with the photometric time series. If there is a

strong correlation between the centroid motion and

the photometry, then it is highly likely that the pho-

tometric variations are due to a dim background star

located in the target star aperture but offset from it by�
1 arcsec. If a candidate has an adequate confidence

level and does not show evidence of correlated cen-

troids, then it is subjected to further scrutiny by the

Follow-up Observations Program (FOP) which will

consist of a set of ground-based and perhaps space-

based observations to rule out other sources of con-

fusion. The physical parameters of viable candidates

will be extracted from the photometry using detailed

models of transit shape and stellar limb darkening.

That is, we will determine the best-fit period, dura-

tion and depth of candidate transiting planets from

the observations, together with error bars on the re-

6
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trieved quantities.

The remainder of this part describes the vari-

ous processing steps in detail, as well as furnishing

fundamental theoretical discussions and background

material germane to the selection of algorithms.
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Figure 2.1: The data flow for processing the science data obtained from Kepler.



Chapter 3

Pixel-Level Calibrations

This chapter details pixel-level corrections made

to the original data set to obtain calibrated pixel val-

ues. These corrections counter certain systematic

artifacts of the CCD operation, such as black level

(bias), dark current, and smear from shutterless op-

eration. We also discuss pixel-level corrections that

may be applied to the data, such as flat field and non-

linearity corrections, that may not be supported dur-

ing mission operations. Most of these calibrations

are performed at the DMC including black-level sub-

traction, and smear subtraction. The SOC identifies

and tracks hot/dead pixels for use in generating cali-

brated light curves.

Figure 3.1 shows the layout of each of Kepler’s 42

science CCDs. Each CCD consists of 2200 columns

by 1044 rows of physical pixels, with two readout

amplifiers located at the bottom corners of the CCD.

The bottom 20 rows are covered with aluminum to

allow for an estimate of the dark and the smear

charge to be made for each column on each expo-

sure. These pixels are not suitable for imaging target

stars and are excluded from the usable FOV area. As

the data received by the DMC are compressed, the

first task is to reconstruct the 15-minute pixel val-

ues from the compressed data stream. Chapter 12

describes the baseline compression scheme in detail,

but we summarize the process here.

In order to increase the effective storage capacity

of the SSR, and to reduce the time required to down-

link the photometric data from Kepler, the baseline

compression scheme performs two tasks: First, it

requantizes the data to make the ratio of the quan-

tization noise to the inherent measurement uncer-

tainty uniform over the dynamic range of the obser-

Figure 3.1: The layout of Kepler’s science CCDs

is given, with the positions of the various collateral

pixel data indicated by the labels in the figure.

vations. Second, it reduces temporal redundancies

in the pixel time series arising from the nature of

the observations. The first step reduces the size of

the word required to store each pixel value from 23

bits to 16 bits, while the second step results in a fur-

ther reduction to �4.5 bits, on average. This level

of compression is achievable because the photome-

ter is imaging the same stars on the same pixels con-

tinuously for each 90 day segment, so that most of

the expected variations in the pixel values are due

to the sub-pixel pointing offsets at the 15-minute-to-

15-minute level. Some variations are expected due

to intrinsic stellar variability of stars contained in the

target star apertures (including background stars) on

timescales comparable to the stellar rotation periods.

For solar-like stars of greatest interest to Kepler, the

stellar rotation periods will be �14 days so that stel-

9
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lar variability should not dominate the variability of

the observed pixel values at the 15-minute level. Of

course, we do expect that there will be target stars

and background stars that exhibit strong variations

on timescales less than 2 weeks, but these should

represent a small fraction of the stars observed by

Kepler.

Once every 24 hours, or suitable interval specified

by the Ground Segment (GS), the RAD750 computer

stores a requantized baseline image on the SSR. The

baseline pixel value is subtracted from each of the

next 95 requantized pixel values for each Pixel of

Interest (PoI), and the residuals are entropically en-

coded and stored on the SSR. The baseline images

allow the compression scheme to track changes due

to intrinsic stellar variability (or other sources) on

timescales longer than one day. For robustness, the

PCE also entropically encodes the difference be-

tween successive baseline images. The presence of

the baseline-to-baseline residuals in the data stream

means that three distinct pieces of information must

be lost in order to make it impossible to reconstruct

the residual pixel values in a particular 24-hour in-

terval: The baseline pixel, the difference from the

baseline to the next baseline, and the difference from

the previous baseline to the current one must all be

lost.

Over the lifetime of the mission, the average frac-

tion of data expected to be downlinked intact to the

ground on the first pass will be �95%, with the

5% loss occurring mainly in large ‘chunks’ due to

weather, equipment failures and DSN operator er-

rors. The bit error rate during nominal communi-

cation will be much smaller, � 10−5. Thus, for DSN

passes with good links, the chance of losing all three

pieces of information should be less than 10−12. The

SSR is capable of holding �18 days of data for

170,000 targets, so that there will be �4 chances to

achieve a good link to send down the data packets

lost during previous passes. Note that the 95% first

pass success rate indicates a less than 1 in 105 chance

that all four passes will fail to deliver a good enough

link to successfully downlink any packet. In total,

we would expect to lose 22.6 Mb out of 3.44 Tb of

data over the course of the mission, or 6 � 10−6 of

the entire data set. In practice, if there is more than

one ‘bad’ pass, additional DSN resources will likely

be brought to bear in order to retrieve the necessary

data.

Figure 3.2 presents a flowchart for the sequence of

steps required to obtain fully calibrated pixels from

the bitstream downlinked by the spacecraft. The top

flow represents the decompression procedure. In or-

der to reconstruct a pixel value from the data stream,

the DMC must first decode the bitstream to obtain

a pixel residual, � �p, add the corresponding baseline

value, � �p	, and then map the requantized pixel value

back onto the linear scale in ADUs. The recon-

structed pixel values are then ready to be corrected

for on-chip systematic effects. These are detailed in

the following sections.

Figure 3.2: Flowchart for the sequence of steps ap-

plied to the raw data stream to obtain calibrated

pixel values. The top flow shows the steps re-

quired to decompress the data, which occurs at the

DMC. The middle flow shows the sequence of pixel

level corrections planned to occur at the DMC, with

“optional” corrections indicated by dashed borders.

Whether these corrections are made will be deter-

mined by the ability to characterize the flat field and

the transfer function of the instrument. The last step,

estimating and removing the sky background, will

occur at the SOC.

3.1 Black Level Subtraction

The CCDs in Kepler’s focal plane are essentially

analog detectors. Although they count photoelec-

trons, at the end of the exposure an analog voltage
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is reported for each pixel, and this is digitized by a

14-bit Analog to Digital Converter (ADC). The ana-

log CCD voltage is biased �5% above the minimum

of the ADC input voltage range to prevent clipping

of low input signals. Similarly, the maximum voltage

read out from a CCD is set �5% below the maximum

of the input voltage range of the ADC to prevent clip-

ping of high pixel signals. Thus, the full range volt-

age swing of the CCD signal covers �90% of the

ADC input range.

Estimates of the black level, or the digital count

value corresponding to 0 V and hence, 0 e−, are ob-

tained from virtual pixels read out either prior to or

after a physical CCD row has been read out. The

baseline design is to pre-read 12 pixels and over-

clock 20 pixels for each physical CCD row. No flux

is accumulated in the serial register during readout.

Consequently, these pixels measure the zero point of

the CCD electronics chain, and can be used to esti-

mate the ‘black level’ or ‘bias’ of the CCDs. Thus,

there are a total of 32 columns that can be potentially

combined together to form the black level estimate

for each readout row. Not all of these are expected to

be useful for estimating the black level. Pixels at the

edge of each virtual segment may be corrupted by

systematic effects in operating the CCDs. The exact

combination of pixels to use shall be determined by

characterization of the CCD electronics chains dur-

ing test and integration. In the baseline design, what-

ever subset of pixels are chosen to form the black

level estimate for each row are simply summed to-

gether prior to being stored on the SSR. Thus, the

DMC will need to divide each black level value by

the number of pixels that were summed together to

generate it. Note that the black level estimates are

not requantized prior to being encoded, since the

black level itself determines the zero-point for the re-

quantization. The PCE will need to use an estimate

of the black level to implement the requantization of

pixels that receive flux.

3.2 Nonlinearity Correction

Once the black level has been removed, it is appro-

priate to correct the pixel values for known nonlin-

earities in the transfer function relating photoelec-

trons to ADUs. Assuming that the transfer function

is well-behaved (i. e., it is monotonic and smoothly

varying apart from the discontinuities introduced by

the ADC), it is relatively straightforward to correct

the pixel values. Nonlinearities fall into two different

categories for Kepler: those that we intentionally in-

troduce to realize improved performance, and those

that are not introduced intentionally. In both cases

a characterization effort may be required in order to

correct for the effect.

One source of nonlinearity is intentionally intro-

duced into the measurements. It was dealt with as

part of the decompression process. The requantiza-

tion step used by the flight software to set the level

of the quantization noise maps linear, digitized ADC

counts onto a nonlinear scale. The requantization is

in effect a non-uniform ADC in which the step sizes

get larger towards the upper end of the possible in-

put values. For example, the maximum counts re-

ported in a 15 minute interval with 300 co-adds (cor-

responding to 2.5 s integration intervals with 0.5 s

readout intervals) is 4,914,900 ADU. The shot noise

at this level is �20,000 e− or 141 ADU. If the differ-

ence between successive levels in the output of the

requantizer at this level is set equal to the shot noise,

then the magnitude of the quantization noise would

be 29% of that of the shot noise. This is a trivial

source of nonlinearity to deal with since it occurs in

the digital domain and we specify it, so that mapping

the reconstructed, requantized values back into ADU

is a matter of knowing where the ‘steps’ occur in the

requantization scheme.

3.3 Flat Field Correction

Another area of consideration is the multiplicative

effect known as the flat field correction. This has

an impact on how the error estimates are treated.

The flat field effect is a result of the quantum effi-

ciency (QE) of the CCD pixels not being uniform.

Values of 0.5% are typically observed for the RMS

pixel-to-pixel sensitivity of CCDs. In addition, there

are often large scale variations across a CCD, and

there is also the effect of the vignetting of the op-
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tics, which produces a similar effect. It is likely

that of the short-scale pixel-to-pixel rms variability

will be determined quantitatively during pre-flight

characterization of the detectors. The large-scale

QE variations, together with the details of the vi-

gnetting, may not be known at the requisite level of

detail until Kepler is in orbit. One Full Field Image

(FFI) may be sufficient to permit extraction of this

information, assuming that the Stellar Classification

Program (SCP) delivers sufficiently accurate stellar

magnitudes transformed onto the Kepler instrument

magnitude scale.

3.4 Smear and Dark Subtraction

The Kepler photometer has no shutter, so that the im-

ages will contain vertical streaks due to star light ac-

cumulating in the pixels along each column during

readout. This represents a systematic error source

unique to Kepler that must be estimated and re-

moved. Moreover, there is no capability to take dark

frames or flat frames, as is customary for ground-

based photometric observations. The risk associ-

ated with a mechanical shutter is too large to justify

having one, given the benign operating environment

for Kepler. However, estimates of the average dark

current per pixel and the effects of the shutterless

readout-induced smear can be estimated from differ-

ent measurements made with the CCDs.

A set of 20 rows at the bottom of each CCD are

masked over to block out starlight. During each ex-

posure, these pixels accumulate dark current, but do

not accumulate star flux. During readout, the charge

packets that are clocked into the CCD to replace the

masked-over pixels accumulate starlight as they are

clocked through the FOV. Thus, these masked rows

measure the smear and the dark current directly. In

addition, a set of 20 rows are to be clocked out fol-

lowing the readout of the physical CCD, much as

the 12 pre-clocked and 20 over-clocked columns are

generated. These 20 rows only exist during readout

and accumulate the same smear flux as the physi-

cal pixels do, but accumulate dark current only while

they exist (nominally 0.5 s). Assuming that the read-

out is 0.5 s, the integration interval is 2.5 s, that there

are 1132 columns and 1064 rows read out each time,

the masked pixels contain

bmask = bsmear + 3 idark 
 (3.1)

where bmask is the masked pixel flux accumulated in

3 s, bsmear is the smear flux each pixel picks up, and

idark is the dark current (in e−s−1). Likewise, the flux

in each overclocked row, bvirtual row is given by

bvirtual row = bsmear + 0 �5 idark � (3.2)

Solving Eqs. 3.1 and 3.2 yields

idark =
1

2 �5 (bmask − bvirtual row) 
 (3.3)

and

bsmear = bmask − 3 idark � (3.4)

In practice, the constants in Eqs. 3.1 – 3.4 are estab-

lished by the detailed timing control of the CCDs,

which will be documented by the Flight Segment

(FS).

Still a third approach exists for estimating and cor-

recting for smear. If saturated charge is conserved,

then the smear can be estimated by summing up the

flux accumulated in the physical pixels comprising

each column. Properly scaled, this summed flux

should be a high fidelity estimate of the smear flux,

since it has so much less fractional shot noise com-

pared to either the masked rows or the overclocked

rows. The details of exactly what measurements will

be used to correct for smear may not be fully worked

out until data is returned on flight, but pre-flight test

of the flight electronics will provide useful informa-

tion to constrain the possible solutions. We note

that by operating at -95�C, there will be virtually no

dark current, so that correcting for the dark current

should not be a concern. These pixel-level correc-

tions will be performed at the DMC at the Space

Telescope Science Institute (STScI) located in Bal-

timore, Maryland.

3.5 Background Flux Removal

There are two major sources of background flux in

the FOV: zodiacal light and dim background stars.
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The zodiacal light is solar flux that is scattered from

dust grains in and above the ecliptic plane into the

Photometer’s aperture. Beyond a certain magnitude,

every pixel will contain at least one dim star, and the

dimmer the star, the denser their concentration. At

this point, the flux from these stars is so diffuse as

to present a smoothly varying background as indi-

viduals cannot be detected in the actual images. The

background flux from these sources will be estimated

in each CCD output by monitoring 4500 dim pixels

throughout the image. It is likely that a low order

two dimensional polynomial surface will be fit to the

pixel measurements and then subtracted from each

target star pixel.



Chapter 4

Extracting Photometric Light Curves

This chapter describes the steps necessary to trans-

form calibrated pixel measurements into detrended,

normalized, relative light curves.

4.1 Optimal Pixel Weighting:

Forming Photometric Aper-

tures

A major task for the SOC is to determine the pho-

tometric aperture to be used for generating the cali-

brated light curve for each target star. This is distinct

from the task of choosing an aperture for the pur-

poses of selecting which pixels are returned to the

ground. Each of these tasks will be treated in turn.

Motions of stellar images over a finite photo-

metric aperture cause apparent brightness changes

(even with no intra- or inter-pixel sensitivity varia-

tions). The wings of any realistic PSF cause these

motion-induced brightness variations, as they ex-

tend outside of any reasonable photometric aper-

ture. Pixel-to-pixel variations generally exacer-

bate motion-induced brightness variations as well as

causing apparent changes in the PSF. In addition,

changes in platescale and focus also induce apparent

brightness changes in measured stellar fluxes. Fig-

ure 2 of Koch et al. (70) presents an example from

the Kepler Testbed. Several possible remedies to

these problems exist: 1) Calibrate the response of

each star’s measured brightness as a function of po-

sition and focus and use this information to correct

the measured pixel fluxes. 2) Regress the lightcurves

against the measured motion and focus or other cor-

related quantity to remove these effects. 3) Calculate

the stellar fluxes using weighted sums of the aperture

pixels in such a way as to reduce the sensitivity to the

typical image motion and focus changes.

The first solution requires detailed knowledge of

the 3-D correction function for each star, and must

be applied on timescales short enough so that the

change in position and focus is small compared to

the full range of motion and focus change. This so-

lution is equivalent to PSF-fitting photometry. For

the Kepler Mission, the attitude control system op-

erates on timescales much shorter than 15 minutes,

so that the motion becomes decorrelated after about

25 seconds. Long term components of focus and

platescale change will occur due to the apparent 1

degree per day rotation of the sun about the space-

craft and differential velocity aberration. Changes

on timescales this long can be neglected for the pur-

poses of transit photometry, so long as the ampli-

tudes are not large enough to move the target stars by

significant fractions of a pixel. The short coherence

time of the spacecraft jitter would necessitate the ap-

plication of the flux corrections after one or several

readouts, which is impractical.

The second solution has been previously demon-

strated in obtaining 10−5 photometry for front-

illuminated CCDs (100) and for back-illuminated

CCDs (61). Our modification of this method is pre-

sented in Section 4.6.

In contrast to the first approach, the third solution

is feasible if the image motion and focus changes are

approximately wide-sense stationary random pro-

cesses (i.e. the statistical distributions of changes in

position and focus are constant in time (50)). Strict

wide-sense stationarity is not required, however, it

14
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simplifies the implementation of the method, as up-

dates in the pixel weights would not be required in

between spacecraft rotations (which occur every 3

months). What remains is the problem of designing

the pixel weights themselves. Section 4.2 follows

the derivation of a formula for obtaining the optimal

pixel weights, and gives examples of their effective-

ness in reducing sensitivity to motion.

4.2 Theoretical Development

We wish to derive an expression for the optimal pixel
weights minimizing the combination of sensitivity
of the flux of a star to image change and the ef-
fects of the weights on shot noise and background
noises. This approach is motivated by a signal pro-
cessing perspective in which aperture photometry is
viewed as applying a finite-impulse response (FIR)
filter to a temporally-varying 2-D waveform. In the
1-D signal-processing analog, the desire is to shape
the frequency response of a FIR filter to reduce or en-
hance the sensitivity of the filter to energy in certain
wavelength regions. In the problem at hand, the de-
sire is to use the free parameters available (the pixel
weights) to minimize the response in the flux mea-
surement to image motion and PSF changes. The
following assumptions are made: 1) the PSF and
its response to image motion and focus change are
well-characterized, 2) the distribution of background
stars is known, and 3) the background noise sources
are well-characterized. Consider a set of N images
of a single target star and nearby background stars
consisting of M pixels ordered typographically (i.e.
numbered arbitrarily from 1 to M). Assume that the
range of motion and focus change over the data set
are representative of the full range of motion and fo-
cus changes. Define the error function, E, as the
combination of the mean fractional variance between
the pixel-weighted flux and the mean, unweighted
flux and a second term accounting for the effect of
the pixel weights on the shot and background noise:

E � 1

N

1

B
2

N
n=1

��B −

M
j=1

w jbn � j�� 2

+ �
B

2

M
j=1

w2
j �b j + �2

j �
(4.1)

where bn� j is the jth pixel value at timestep n
n =

1 
 � � � 
N; j = 1
 � � � 
M; w j is the weight for pixel j 
 j =

1 
 � � � 
N; b j is the mean pixel value for pixel j; B

is the mean flux with all weights set to 1; �2
j is the

background noise variance for pixel j; and all quan-

tities are expressed in e−. Here we take the shot noise

to be due entirely to the star itself, and the back-

ground noise to be a zero-mean process which in-

cludes such noise sources as readout noise and dark

current. This implies that the images have been cor-

rected for all non-zero-mean noise sources such as

dark current and the readout smear flux. We further

assume that the background noise sources are uncor-

related from pixel to pixel. If this is not the case,

the second term of 4.1 can be augmented to account

for the correlation. The scalar � � [0
� ) determines

the balance between the desire to minimize the dif-

ference between the flux estimate and the mean flux

value, and the desire to minimize the accompanying

shot noise and the background noise. For this situa-

tion, we would normally set � = 1.

The error function in Eq. 4.1 is quadratic, and

therefore admits a closed-form solution in matrix

form:

w = [
1

N
BT �B + �D]−1 �b B 
 (4.2)

where

B � �bn� j �
n = 1
 � � � 
N; j = 1
 � � � 
M
D � �Di� j � = bi + �2

i 
i = j = 1
 � � � 
M (4.3)

b � �b j �
 j = 1 
 � � � 
M �
Throughout this paper, boldface symbols represent

column vector or matrix quantities. For real data

with noise-corrupted images, the scalar � should be

adjusted to prevent over-fitting. If enough data is

available, � will be essentially 0.

An alternative iterative scheme can be used that is

based on the popular NLMS (normalized least mean

square error) algorithm for adaptive filtering (50).

The chief advantage of such an algorithm is that the

pixel weights can be designed ‘in place,’ and can

be updated as necessary. This algorithm adjusts the

pixel weight vector by an incremental vector oppo-

site the direction of an estimate of the gradient of the

error function. Taking the expression 
E(n) = (B − bT

n
�wn)2 (4.4)

= [B − (b + !bn)T �wn]2 (4.5)

= (B − b
T �wn − !bT

n
�wn)2 (4.6)

= (!bT
n
�wn)2 (4.7)
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as the error estimate at time n, where !bn is the dif-

ference between the average pixel fluxes and those at

the nth time step, the update to the weight vector at

time step n is given by

wn = wn−1 −� "E(n)!bT
n
� !bn + # (4.8)

= wn−1 −� bT
n
�wn−1!bT

n
� !bn + # !bT

n 

where � is a positive scalar that controls the rate of

adaptation (and convergence in the case of stationary

noise and motion) and # is a small positive number

to ensure stability in cases where the instantaneous

error is 0. Note that the term for shot and background

noise does not appear here. It is not necessary as� can be adjusted to prevent over-fitting the noise,

and the algorithm is mainly of interest in the case of

noise-corrupted images.

In terms of considering implementation on the

Kepler spacecraft, Equation 4.2 may be preferred,

as it reduces the computations required. This ap-

proach would require the collection of adequate sam-

ples of star pixels to recover well-sampled (super-

resolution) scenes for each target star. This might

be avoided with proper calibration of the optics and

CCDs along with a high-resolution catalog of stars

in the FOV. If necessary, the adaptive scheme of

(57) could be implemented, with proper choice of

scheduling and for the value of � to insure that the

adaptation takes place over time scales significantly

longer than a transit.

4.3 A One-Dimensional Example

In this section we provide a 1-D example to examine

various properties of optimal pixel weighting. Fig-

ure 4.1a shows the average ‘image’ of a Gaussian

with a full width half max (FWHM) of 4 pixels on

an 11 pixel aperture, nominally centered at -0.2 pix-

els. The integration time corresponded to 3 minutes

for a 12th magnitude star for the Kepler photome-

ter, yielding an average flux of 5�5x107 e− at each

timestep. This PSF was moved over a 101-point grid

in space of $0.5 pixels from its nominal location at

Figure 4.1: Slides a, c, and e

-0.2 pixels and integrated over each pixel in the aper-

ture to form a set of images. Figure 4.2b illustrates

the response of the flux signal to image motion over

the data set for optimal pixel weights correspond-

ing to various signal-to-noise ratios (SNRs) and for

unweighted aperture photometry. Here, SNR is de-

fined as the ratio of the mean flux to the root sum
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Figure 4.2: Slides b, d, and f

square (RSS) combination of shot noise and back-

ground noise. Note that the full range of brightness

variations is 1.3% for unweighted pixels, and that

this is reduced to 1x10−5 at an SNR of 7,411. At

low SNRs, the background noise dominates, and the

pixel weights adjust to minimize the increased noise

due to background, rather than to motion. However,

the response to motion is made symmetric by the

pixel weights even at low SNR so that the motion

will more easily average out over timescales much

longer than the coherence scale of the motion. Fig-

ure 4.1c presents the total expected fractional error

and its three components, shot noise, motion error,

and background noise, as functions of SNR. The

pixel weights confine the motion error to well be-

low the unweighted case over the range of SNRs pre-

sented here. Figure 4.2d shows the evolution of the

optimal pixel weights as a function of SNR, while

Figure 4.1e shows the profiles of the pixel weights

at four different SNR values. As the SNR deterio-

rates, the profile of the optimal pixel weights looks

more and more like the original star profile. The

final Figure, 4.2f, illustrates the application of 4.9

to an online adaptive solution for the pixel weights.

A total of 5,000 images along with shot noise and

background noise of 6,310 e−/pix were presented to

the algorithm, which was initialized with all weights

equal to 1. The pixel weights converge after a few

thousand iterations, corresponding to a few days of

adaptation. Better initialization would result in faster

convergence. We note that the excess error, or misad-

justment of the weights is rather small, about 10% of

the theoretical minimum error. Once convergence is

achieved, the adaptation rate can be reduced so that

the algorithm tracks changes in the mean image po-

sition and PSF shape over timescales much longer

than transits, preserving any transits in the resulting

flux time series.

4.4 Selecting Pixel Masks

As in conventional differential aperture photometry,

optimal pixel weighting benefits from pre-masking

of the pixels containing each star image to consider

only those pixels with significant stellar flux content.

The advantages are two-fold. First, design of op-

timal pixel weights for dim pixels from actual im-

ages is problematic whether the weights are gener-

ated using Equation 4.2, or whether an adaptive al-

gorithm is applied online. A great deal of data is re-

quired to reduce the uncertainties in the correspond-

ing pixel weights to acceptable levels. Second, re-
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ducing the number of pixels for which weights are

sought reduces the amount of data required for the

pixel weight design. Various schemes for identify-

ing the photometric aperture diameter and shape ap-

pear in the literature (57) and (30). Here we present

the method applied to the laboratory data to identify

pixels allowed to participate in flux measurement for

each star. The pixels are first listed in order of de-

scending brightness. Next the cumulative SNR for

the pixel list is calculated according to:

SNR(i) = % i
j=1 bj&% i

j=1 bj + i�2

i = 1
 � � � 
M 
 (4.9)

where all units are in e−. The function SNR(i) will

increase as more pixels are added until the point at

which the pixels are so dim as to detract from the in-

formation content of the flux estimate. All pixels be-

yond the point at which the maximum is attained are

masked out. Figure 4.3 shows the cumulative SNR

for star S12d, a 12th magnitude smear star in the lab-

oratory demonstration. SNR(i) peaks at 32 pixels.

Figure 4.4 shows the pixels selected for inclusion in

the flux estimate for this star in white, while masked-

out pixels are in black. The border of the mask is

roughly circular, as expected.

Figure 4.3: Cumulative SNR for star S12d shows

that only 32 pixels contribute meaningful informa-

tion about the star’s flux.

Figure 4.4: The pixels used for flux calculations for

this star are shown in white.

4.5 Ensemble Photometry and

Common-Mode Noise Rejection

Ground-based photometry suffers from having to

correct large brightness changes that occur over var-

ious time scales. Time varying extinction is the

largest of these, resulting in 10–20% changes in star

brightness over the course of a night. Night–to–

night variations in atmospheric transparency cause

longer term errors in star brightness measurements.

While Kepler will not have these problems, there are

other common-mode errors that can affect photomet-

ric accuracy, for example, temperature related gain

changes. These and other multiplicative common-

mode errors can largely be compensated by dividing

out an appropriate mean signal from the measure-

ment of an individual star. The mean signal appropri-

ate for a given target star is determined by construct-

ing an ensemble of stars whose response to the error

inducing process is similar to that of the target. For

example, in ground-based observations an ensemble

is usually constructed from stars of a similar color to

the target because they are affected in the same way

by wavelength dependent extinction or transparency

changes.

Kepler photometry is not expected to suffer from

large changes in sensitivity or gain; however, if
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changes are seen in the data, ensemble photometry

may be used to mitigate them. The selection of an

ensemble will depend in part on the cause of the er-

ror signal. Because each CCD output is processed

through a separate amplifier, the largest pool for an

ensemble would be the set of stars on the same out-

put amplifier. In the event of thermally induced gain

changes caused by the amplifier heating up during

readout, the ensemble would be chosen from stars

in a region around the same row as the target. In this

case, the ensemble might be chosen from stars whose

raw flux time series is highly correlated with that of

the target star. Highly variable stars are excluded

from the ensemble. Variables can either be known

in advance, for example known eclipsing binaries, or

detected during photometry. To detect new variables,

we first perform ensemble photometry and then se-

lect out stars whose relative flux time series varies

more than some predefined threshold. The ensemble

normalization is then redone excluding these stars.

In the absence of large gain or sensitivity changes,

the method to remove systematic errors described

below will offer superior performance.

4.6 Removing Systematic Noise

This section describes the approach to be used to es-

timate and remove residual systematic errors. The

one systematic error that is expected to be of some

concern is pointing errors on time scales longer

than the photometry sampling period. These can

cause photometric variations that are highly corre-

lated from star to star, although they are not a com-

mon mode noise term. The preferred method for

removing systematic noise that is highly correlated

across the target stars is to apply singular value de-

composition (SVD) analysis to direct measurements

of the suspected systematic noise sources, such as fo-

cal plane temperatures and photometer pointing off-

sets. This results in a set of vectors that best ex-

plain the signatures of the various systematic noise

sources. Once these SVD components are removed

from the lightcurves, an SVD analysis shall be con-

ducted for the target stars in each channel to de-

termine if other systematic errors might be present.

If so, then there will be a small set of SVD vec-

tors with large singular values that are not corre-

lated with any of the previously identified system-

atic sources. An attempt should be made to correlate

these residual SVD vectors with existing ancillary

data measurements other than those representing the

known systematic sources. If additional systemat-

ics can be identified with direct measurements, then

these should be added to the list of known system-

atics and the first step of the process should be re-

peated with the new set of systematic sources. If no

additional systematics can be identified in the ancil-

lary data, then the residual SVD components should

be removed from the stellar lightcurves prior to at-

tempting to detect planetary signatures.

To develop this idea further, the singular value de-

composition of a real m �n matrix A is the factoriza-

tion,

A = U'V ( � (4.10)

The matrices in this factorization have the follow-

ing properties: Um)m and Vn)n are orthogonal matri-

ces. The columns ui of U = [u1 
 ���
um] are the left

singular vectors, uk, and form an orthonormal basis,

so that ui
�u j = 1 for i = j, and ui

�u j = 0 otherwise.

The rows of V * = [v1 
 � � � 
vn] contain the elements of

the right singular vectors, vk, and form an orthonor-

mal basis. 'm)n is a diagonal matrix with entries

(�1 
 � � � 
 �n) is a real, nonnegative, and diagonal ma-

trix. Its diagonal contains the so called singular val-

ues � i, where �1 � � � � � �n � 0.

The singular vectors form orthonormal bases, and

the important relation A � vi = � i
�ui shows that each

right singular vectors is mapped onto the correspond-

ing left singular vector, and the "magnification fac-

tor" is the corresponding singular value.

Every m � n matrix has a singular value decom-

position. The sum of singular values of A equals the

Frobenius norm of a matrix A, defined as the square

root of the sum of the squares of all its entries and in

this sense represents energy.

Any real matrix Am)n (where m > n) can be writ-

ten as the sum of n rank-one matrices. A low rank ap-

proximation of A defined as Alow rank = % j=r
j=1 � ju jv

T
j

where r + n captures as much of the energy (in the 2-

norm or Frobenius norm sense) of A as possible and
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expresses matrix A as a sum of r rank-one matrices of

decreasing importance, as measured by the singular

values. On the other hand, Alow rank = % j=n
j=r � ju jv

T
j

where 1 + r + n ignores the dominant component(s)

contributing to the energy while retaining subtler

variations. This is the basis for applying SVD to

a matrix containing light curves and creating a low

rank approximation which retains only the residual

flux variations that are unique to each stars including

the transits.

By visual inspection of the singular values, one

may identify large singular values that should be dis-

carded to reduce the effects of trends in data caused

by systematic variations.

4.6.1 Simulation Study

To demonstrate the potential of SVD to eliminating

correlated noise from a grouping of star flux time se-

ries values, a simple simulation was developed. Star

flux data from the photometer was created as the sum

of shot noise, poisson noise, star field flux, flux de-

crease due to planetary transits, and the trend intro-

duced by long term systematic variations. Every-

thing beyond the flux mean, the flux random noise,

and the transit offset is considered to be correlated

signals that SVD should be able to eliminate from

the individual light curves if operated on collectively.

Follows is a description of the data generated in

this simulation.

1. Each of 50 star field mean flux variations is

drawn from a uniform distribution varying between

0 and 107.

2. Shot noise is modeled as as a gaussian with a

zero mean and a standard deviation 103.

3. Poisson Noise is modeled as gaussian with

a zero mean and a standard deviation equal to the

square root of the mean star flux.

4. Two trends are introduced: (1) a nonlinear

trend, one cycle of sinusoidal variation over the en-

tire observation period with a peak magnitude 104,

and (2) a minuscule trend, proportional to the flux

mean, increasing over the first half of the observa-

tion period and decreasing over the second half.

5. Transits corresponding to a dimming of 2% of

star flux values and with a duration of 5 hours (equiv-

alent to 20 observations) are superimposed on light

curves.

A single example of these curves is shown in Fig-

ure 4.5. Star data A is a matrix of size mxn where m

is time steps and n is number of stars.

Given these 50 light curves, SVD is then applied.

Figures 4.6 through 4.10 show what SVD extracts as

the first five singular values. Note that these repre-

sent common variation in the data in descending oder

of magnitude. The relative magnitude of the singular

values are shown in Figure 4.12.

After singular value decomposition, a residual ma-

trix is formed as

Alow rank =

j=n,
j=r

� ju jv
T
j (4.11)

where r + n. The significant (and common to all light

curves) singular values (here taken to be four) are re-

moved from the data and the resulting light curves

are reconstructed. The result is what can be thought

of as the individual star’s light curve without instru-

mental variation. An example of this is shown in Fig-

ure 4.11. Note how easy it is to visually identify the

transit when compared to the original data in Figure

4.5.
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Figure 4.5: Generated Star Data includes a mean flux

value, a sinusoidal component, a drifting trend, ran-

dom noise (shot and Poisson), and a transiting event.
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Figure 4.6: Reconstructed Star Flux (in counts) using

only the first singular value.
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Figure 4.7: Reconstructed Star Flux (in counts) using

singular value #2.
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Figure 4.8: Reconstructed Star Flux (in counts) using

singular value #3.
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Figure 4.9: Reconstructed Star Flux (in counts) using

singular value #4.
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Figure 4.10: Reconstructed Star Flux (in counts) us-

ing singular value #5. Notice that most of what ap-

pears to be modeled is random fluctuations about the

mean and possibly one or two transits. At this point,

removing the singular value from the data set would

hurt the transit detection ability.
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Figure 4.11: Residuals after applying SVD to the

original Star Data.
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Notice that there is a knee in the curve between the

fourth and fifth singular values. Only singular values

to the left of this knee should be eliminated from the

data.



Chapter 5

Difference Image Analysis

Difference image analysis has been shown to pro-

vide excellent performance for stellar time-series

photometry in a number of contexts over the past five

years. Ground-based data in very crowded stellar

fields, collected for the purpose of detecting micro-

lensing events, is now routinely analyzed with dif-

ference image analysis. Data acquired with the CCD

cameras on HST in crowded stellar fields has pro-

vided best results using difference image analysis,

for both faint and bright star applications, whether

working in limiting cases of low signal-to-noise on

detection of ancient supernovae, or in high signal-

to-noise applications for the detection of planets via

transits.

For the Kepler project, the use of difference image

analysis also enables checks on the positional coinci-

dence of differential transit signatures in comparison

with the direct image as a means of eliminating a sig-

nificant fraction of false positives arising from back-

ground, diluted eclipsing binaries. Hot pixel devel-

opment within stellar apertures can best be tracked

using difference image analysis. Difference image

analysis may provide a competitive basis for the gen-

eration of extracted time series from the image level

data for Kepler.

5.1 Introduction

The state-of-the-art crowded field, time-series pho-

tometry involves creation of difference images (e.g.,

Alcock et al 1999; Alard 1999), where for well-

sampled, ground-based CCD data excellent gains

over classical point spread function (PSF) fitting in

direct images are realized. With good difference im-

ages non-variable objects are removed (except for

residual, unavoidable Poisson noise), leaving any

variables clearly present as isolated (positive or neg-

ative) PSFs even if the variable was badly blended

with brighter stars in the direct images. Extraction

of precise relative photometry changes for any star in

a difference image can be handled with either aper-

ture photometry or PSF fitting, and precise knowl-

edge of the PSF is much less critical for the differ-

ence image analyses relative to attempting photom-

etry on blended stars in the direct image via point

spread function fitting.

As one might infer from the name, difference im-

age analysis (DIA) involves the creation of individ-

ual images that are the simple difference between an

observed image and a model, or appropriate time-

averaged mean image. In DIA the primary challenge

is the creation of a difference image for each image

in a sequence, that for non-variable sources, results

only in Poisson noise from the photon sources, plus

any instrument noise associated with the data acqui-

sition. Assuming the model image represents a good

time-averaged mean, DIAs at the position of a vari-

able source will show appropriate noise plus the dif-

ferential image signature of the temporal variability.

Creating good difference images requires that pre-

cise knowledge exists for registration changes frame-

to-frame, as well as any changes in the point spread

function with time. The primary effort in DIA is in

determining and accounting for these changes. For

ground-based data, variable seeing, coupled with dif-

ferential atmospheric refraction, and changing color

terms in extinction are the primary challenges that

23
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must be dealt with in creating good difference im-

ages. For space-based data, some of the ground-

based complications go away, leaving registration

and any changes in the PSF from the instrument as

the primary challenges. Ground-based applications

almost always start with data that is well sampled,

i.e., there are more than two pixels spanning the full-

width-half-maximum (FWHM) of PSFs, even for the

best seeing images. For space-based data an addi-

tional challenge arises, since tradeoffs between field

of view and pixel scale on the sky typically result in

under-sampled data with sharp PSFs.

In ground-based applications it is typical to se-

lect several images acquired in times of best see-

ing, and low extinction, and then average these to-

gether, after interpolation to a common registration,

to form a model image. Difference images are then

formed by interpolating the mean image to the (field-

dependent) position of individual images (or inter-

polating the individual images, with well-sampled

data, either is fine), and convolving with a differen-

tial seeing kernal to match the PSFs of the model to

the individual images, and then forming image dif-

ferences as a simple pixel-by-pixel difference. For

the ground-based data, scaling the individual images

for extinction changes, including color terms, must

of course be included.

For the creation of good difference images in

space-based applications, the essential starting point

for DIA-based work, can be expected to require care-

ful attention to creation of an optimal reference im-

age, and internally consistent knowledge of registra-

tion and PSF adjustments required to match the ref-

erence image to individual frames.

In an ideal experiment, where the guiding is per-

fect, and there are no changes of focus, or other

sources of PSF changes, the DIA would be very sim-

ple. One would simply form a reference image as the

mean over all available images, then for each indi-

vidual image the difference image would be formed

for each pixel by subtracting the reference.

Up to this point in the introduction, only creation

of the difference images has been addressed, and this

is intentional. Once the full process has been exe-

cuted to arrive at excellent difference images the re-

maining steps by comparison are minor in practice.

DIA is all about creating good difference images, al-

though this document will include discussion of the

remaining steps: using the difference images for rel-

ative photometry, and using the difference images for

false positive rejection, and hot pixel detection.

The primary discussion here follows from anal-

ysis of four separate programs with HST; a brief

synopsis of these are included here as a means of

introducing publications with a significant techni-

cal description content. Gilliland et al (1995) pro-

vides a summary of analyses applied to a 40 hour

time-series of near-UV observations of the core of

47 Tuc with the original WF/PC with the purpose of

detecting � Scuti oscillations in the Blue Straggler

population. The primary tools underlying DIA (pre-

cise registration, building up an over-sampled mean

image, and using these as integral parts of cosmic

ray elimination) were developed and used for these

analyses, although this terminology was not used at

the time. Gilliland, Nugent, and Phillips (1999) ap-

plied DIA in comparing two epochs of HST obser-

vations of the Hubble Deep Field. The difference

image used in this case was primarily just for com-

paring two epochs of averaged data, and thus illus-

trates the power of the technique in a simple appli-

cation. (The Type Ia Supernova, 1997ff, detected

with DIA at 27th magnitude remains the highest red-

shift object of its class and has contributed to fun-

damental advances in cosmology.) The data analy-

sis discussion includes details of developing registra-

tion information, model image creation and hot pixel

tracking that will remain directly relevant to Kepler

applications. Gilliland et al (2000) discuss results

for an HST-based search for extrasolar giant planets

for which 34,000 stars in the globular cluster 47 Tuc

were followed for 8.3 days with resulting precisions

sufficient for detection of ‘Hot Jupiters’. The pri-

mary technical advance required in this case involved

the need for PSF matching between the over-sampled

model and individual frames. The last HST program

for which DIA is being applied is from observations

in February 2004 in which
�

100,000 stars in the

galactic bulge (Kailash Sahu, PI) were monitored for

7 days, again to search for short-period, gas-giant

planets. The DIA for these data are being conducted

in parallel with drafting this report.
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The remainder of this chapter will be as follows.

Section 5.2 will detail the steps that are required to

form internally consistent registration information,

development of an over-sampled mean image, and

use of the latter in forming difference images. Sec-

tion 5.3 will discuss the complication of changing

PSFs with time in creating the difference images.

Section 5.4 will provide a description of options for

deriving relative time-series photometry from a se-

ries of difference images. Section 5.5 will discuss

application of the same difference images for false

positive eliminations. Section 5.6 will discuss detec-

tion and tracking of hot pixels using difference im-

ages. Section 5.7 includes thoughts on unique com-

plications, likely with the Kepler data and options for

analyses.

5.2 Mean Image Creation and Reg-

istration

For the purposes of this section we assume that the

PSF is perfectly stable in time, or at least we will ig-

nore any variations of the PSF over the time interval

of interest. What attributes are required of a ‘mean

image’ for the purposes DIA? In the absence of im-

age motion frame-to-frame, the mean image at each

pixel would simply be the the sum divided by the

number of frames. Then difference images would be

formed by subtracting this mean from each individ-

ual frame. There will be motion between individual

images, so we require that the mean image be formed

in such a way that it can be evaluated at the position

of any individual image. Essentially, the mean image

in this context is intended to encapsulate information

about what any individual frame would be at an ar-

bitrary guiding position. Consider a single pixel of

interest, that happens to be located just off the core

where the intensity changes rapidly as a function of

x 
y offsets. Over a time interval of a few weeks ap-

propriate for executing DIA, the pointing is assumed

to provide a jitter ball in which the individual point-

ings define a more-or-less Gaussian distribution with

a width that is small compared to an individual pixel

scale. We now want the ‘mean image’ to capture

the information about how the intensity changes de-

tected by this pixel as a function of position offset.

There are at least two ways to do this. One would

be to form an over-sampled mean image at say a

factor of 4 sub-pixel resolution, perhaps by averag-

ing together somehow the set of individual pointings

from the ensemble that fall closest to the 4�4 sub-

pixel points to be sampled. If we had pointing errors

(dithers) that spanned a full pixel, this would result

in a nicely over-sampled mean image of the stellar

scene. In the case of Kepler, with the pointing errors

much smaller than a pixel scale the size of the 4�4

sub-pixel scale would be chosen to just span the re-

alized dithering. The second approach is to define

a mean image in such a way that the intensity re-

sponse of a given pixel is captured as the terms for a

function which best fits in a least-squares sense the

surface I(x 
y), where I is the intensity, or number of

counts expected per unit time for the pixel. Having

developed the mean image in terms of this surface

fit, difference images would then be formed by tak-

ing any individual image, evaluating its specific x
y
offset within the ensemble of pointings, then evalu-

ating the surface fit and subtracting, thus forming the

difference for the target pixel. A difference image is

the same operation repeated for all of the pixels in

the image.

Following the discussion in Gilliland et al (1995)

the surface fit representation at each pixel can be

shown as:

Ii� j(t) = f (�xi� j(t) 
 �yi� j(t)) (5.1)

where t carries an implied mapping from n = 1 to N

separate exposures to be analyzed. In practice I have

set up the function f as a bi-cubic polynomial with

the following basis terms (separately formed at each
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i
 j):

p1�n = �xn

p2�n = �yn

p3�n = 1�5�x2
n − 0 �5

p4�n = 1�5�y2
n − 0 �5

p5�n = �xn�yn (5.2)

p6�n = (2�5�x2
n − 1 �5)�xn

p7�n = (2�5�y2
n − 1 �5)�yn

p8�n = (1�5�x2
n − 0 �5)�yn

p9�n = (1�5�y2
n − 0 �5)�xn

The surface fit at each i
 j pixel then is solved for as a

least-squares solution for the coefficients a0, am 
 m =

1
 � � � 
9, such that the weighted difference:-2 =

N,
n=1

1.�2
n[In − (a0 +

9,
m=1

am pm�n)]2 (5.3)

is minimized. I reach a solution for the am using

a multiple linear regression code (REGRES) from

Bevington (1969) where the �2
n factor is taken sim-

ply as Poisson noise (object plus sky) and detector

readout noise �2
n = In + RO2 (5.4)

The solution for the surface fit is performed itera-

tively with the elimination of cosmic rays as points

deviating by more than 3 – 4� from the fit (see

Gilliland et al 1995 for detailed comments on this

step given under-sampled data). An intermediate

data product consisting of either the data, I i� j, or this

value replaced by the surface fit (model) expectation

f (�xi� j 
 �yi� j) is saved after the solution for all pixels.

As outlined above, each pixel of interest has it’s

own surface fit, I(x 
y) developed independent of

other pixels. Input to the process of developing this

fit is knowledge of the x 
y offsets for all images in

the stack to be analyzed. This requires that in a first

attempt to develop the surface fits a reasonably ac-

curate set of x 
y offsets are available either from the

pointing control system, or from separate analysis of

the data, and these deltas apply reasonably well to

the entire image. Once an initial set of surface fits

are available, the registrations of individual frames

can be improved in an iterative sense via direct use

of the surface fits. For a registration model consist-

ing of x
y zero point offsets, and small rotation and

plate scale terms the registration can be iteratively

improved via a least squares solution at each image

for the coefficients (zero points: x0 
y0, plate scales:

pscx 
 pscy [deviations from unity], and rotation term:

rot) that minimize:-2 = 1.�2
i� j[Ii� j − f (�xi� j 
 �yi� j)]2 (5.5)

where f (�xi� j 
 �yi� j) is the Legendre polynomial sur-

face fit at each pixel, and�xi� j = x0 + (xi� j − xc)pscx + (yi� j − yc)rot (5.6)�yi� j = y0 + (yi� j − yc)pscy − (xi� j − xc)rot (5.7)

where xc 
yc are simply the mid-points of the x 
y
ranges respectively. The solution for improved regis-

trations, and improved surface fits is cycled through a

few times and has always converged well when given

a good starting point.

Once the iteration cycle on surface fits at each

pixel, coupled with data replacement by model val-

ues when cosmic rays are detected, and the regis-

tration improvement is finished, then the difference

image, dIi� j, over all pixels of interest is simply set

as:

dIi� j = Ii� j − f (�xi� j 
 �yi� j)� (5.8)

5.3 PSF Changes in DIA

With observations from HST the point spread func-

tion changes throughout the orbital period of about

96 minutes as the telescope flexes due to changing

thermal conditions. This should be much less of an

issue for the Kepler data, although in the days af-

ter a 90 degree roll, or on time scales of months

the Kepler PSFs may be expected to change as well.

The PSF scales as measured in pixels are quite com-

parable for HST and Kepler. One simple measure

of PSF variability for HST is to track the relative

change of intensity in the central pixel (for stars well

centered on a pixel), compared to the total intensity

(as say summed over a 5�5 pixel domain). In the

HST projects with nearly continuous observations
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over 7-8 days designed for gas-giant transit detec-

tion, the central pixel intensity changes by typically

20% peak-to-peak over the course of 96 minute or-

bits. Since these projects were aimed at detecting

1–2% transit depths, with expected time series preci-

sions down to 0.2–0.4% for the brighter stars, and the

fields are quite crowded, accounting for these PSF

changes becomes the dominant challenge in forming

good difference images. For HST data, modelling

the PSF changes is the most computationally inten-

sive step in the DIA, and the one that is most tricky

to set up. Although not expected to be needed for

Kepler, it will be informative for risk mitigation in

dealing with unexpected analysis needs to describe

the HST experience in detail.

In the previous section we described development

of a model for each pixel of interest, that captures

how the intensity of the pixel is expected to change

in response to arbitrary x
y offsets within the range

spanned by typical frame-to-frame guiding errors.

The solution for this model was done separately for

each pixel by performing a least-squares solution

of the surface fit I(x
y) with basis functions being

bi-cubic Legendre polynomials in two dimensions.

Bringing in PSF variations changes the character of

the pixel-intensity model dramatically, since the so-

lution can no longer be localized to a single pixel.

The PSF changes can be modelled as a convolution

of a representative image with a convolution kernal.

Thus the correspondence between observed intensity

and a model representation as in Equation 5.1 be-

comes:

Ii� j(t) = f (�xi� j 
 �yi� j) + ps fl �m(t) / f (�xi� j 
 �yi� j)
(5.9)

where ps fl �m would be an appropriately sized grid of

values as required to capture the changing PSF. For

the HST case the convolution needs to be over �3.5

pixels.

For the ground-based micro lensing projects,

where DIA techniques were initially applied, it was

common to select a subset of the observations with

the best seeing (sharpest PSFs), and form an average,

best-seeing model image from these. The convolu-

tion kernal to account for matching the PSF of indi-

vidual frames would then always represent a smear-

ing, i.e., the convolution kernal, represented as a dis-

crete set of pixel values in an l�m matrix would have

a central value less than unity, with positive power

in neighboring pixels. For the HST data I have ex-

perimented with using the full data set to create a

reference image, the convolution kernal must then

account for cases in which the individual image is

blurred compared to the model (central value of ker-

nal less than unity, with positive wings), and cases

with sharper individual images (central value greater

than unity with net negative power in the wings).

With under-sampled images, and with a set of

image-to-image offsets that samples well (and redun-

dantly) the full sub-pixel phase space, I have found

that evaluating the differential convolution kernal at

a factor of two over-sampling works best. I have

adopted a brute-force, least-squares solution for a

differential PSF convolution kernal as a 7�7 matrix

ps f [l 
m], by solving for the 49 separate values that

minimize:-2 =
,
i� j 1.�2

i� j[Ii� j − ps f / g(�xi� j 
 �yi� j)]2 (5.10)

where g(�xi� j 
 �yi� j) is an image at factor of two over-

sampling developed by evaluation of f (�xi� j 
 �yi� j) at

the nominal registration (�xi� j 
 �yi� j) at each pixel,

plus $0.5 pixel positions. For these fits, and the

ones referred to earlier to improve registration, I have

found it prudent to eliminate inclusion of variable

stars. This has been accomplished by taking a cut

above 3� in a map of rms per pixel from the surface

fit step of Equation 5.3, and defining such pixels to

either be coincident with variable stars, or bad pixels.

Also a down-selection is made to only include pix-

els in the fit that carry significant information, e.g.

pixels that seem to represent sky background would

not be useful for these fits. In practice I include

pixels that never saturate, and that have coefficients

am 
 m = 1
 � � � 
9 that are significantly non-zero.

With the HST instruments there is mild field de-

pendence of the PSF changes. This has been cap-

tured by performing the solution for ps f on separate

5�5 domains of the full field, then smoothing the re-

sults by fitting with a 2–D, quadratic Legendre poly-

nomial.



28 CHAPTER 5. DIFFERENCE IMAGE ANALYSIS

The effect of a changing PSF is isolated by gener-

ating a ‘differential convolution image’, pIi� j defined

as:

pIi� j = f (�xi� j 
 �yi� j) − ps f / g(�xi� j 
 �yi� j) (5.11)

For an individual image Ii� j that is blurrier than the

average (model) image, pIi� j shows a signature at

each point source that is negative in the core with

positive wings. For Ii� j sharper than average, cores of

stars in this ’differential convolution image’ are pos-

itive with negative wings. A difference image could

now be formed as:

dIi� j = Ii� j − f (�xi� j 
 �yi� j) − pIi� j � (5.12)

The rationale for carrying this special image is

that in doing so the effects of PSF changes frame-to-

frame can now be taken into account during the crit-

ical step of forming the surface fits in Equation 5.1,

and in particular allowing for robust elimination of

cosmic rays. Consider a case in which most images

have similar PSFs, but a small subset are blurrier.

Then in the approach outlined in the previous section

the wings of stars in the subset of blurrier images

would often be flagged as cosmic rays, and there-

fore have their values replaced by the model. This is

of course a disaster for photometry in these images,

since the higher values in star wings resulted from

spatial rearrangement of flux, and clipping these val-

ues would therefore result in smaller than real fluxes

when sums over the full PSF associated with a star

are formed. If the Ii� j of Equation 5.1 are temporar-

ily subtracted by the pIi� j , then the resulting vec-

tor of intensity values is free of the effects of PSF

changes, and a proper surface fit intended only to be

able to capture the effects of image motion, can be

formed. This brings up a critical point which inten-

tionally was not made explicit in the earlier discus-

sion: Reaching a full DIA solution involves a number

of coupled iterations. And often the starting point for

solutions is not well posed.

For example, consider the case in which only a

few frames have significantly blurrier PSFs. A sim-

ple exercise of the surface fits of §5.2 would result in

having the wings of stars thrown away as cosmic rays

in these images. If this happened, then later perform-

ing the solution for a ‘differential convolution kernal’

would not capture the effect of the blurred PSF since

we would have thrown away the stellar wings. The

solution to this involves yet another iteration cycle at

the original surface fit (Equation 5.1) stage, in which

a solution is made in which a much higher penalty

is temporarily adopted for frames which show too

many cosmic rays as having been eliminated. In the

most recent DIA case I have formed a mask for pix-

els that are on stars with good, strong, but unsatu-

rated pixels, and a separate mask that corresponds to

pixels at the level of sky background. The number of

cosmic rays flagged on stars should be 0 the number

flagged on sky, adjusted for the relative numbers of

pixels in the two masks. For those frames in which

relatively more cosmic rays had apparently been de-

tected on stars, than sky, the cosmic ray elimina-

tion threshold has been raised as necessary to drop

the number of eliminated pixels to a nominal level.

Then, and only then, would the solution for the dif-

ferential PSF for that frame be well posed. Once a

decent estimate for the effects of changing PSFs has

been isolated in pIi� j, then the threshold for cosmic

ray elimination in these frames can be lowered to the

standard value used generally. But it takes a ‘boot-

strap’ approach to arriving at a full solution. The

details of this are not important here, since major ad-

justments would certainly be required for use with

the Kepler data.

In Fig. 5.1 the fourth panel from the left con-

tains the ‘differential convolution image’ as defined

in Equation 5.11. Comparing this image to a di-

rect image in the leftmost panel, one can see that

structure is reproduced near each stellar source. The

structure accounts for the unique shape of the PSF in

this individual frame compared to the average over

the full set of images.

5.4 Photometry from Difference

Images

In Fig. 5.1 a difference image section is reproduced

as the rightmost panel. High-amplitude variable stars

are trivial to pick out in a movie of difference im-

ages – appearing as stellar PSFs that go from posi-

tive to negative and back. Some of the variable stars
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Figure 5.1: Panels from left to right are: 1) original image, 2) same with cosmic rays replaced with estimated

data values, 3) the cosmic rays, 4) a differential convolution image, and 5) the corresponding difference

image. See the text for additional discussion.

in this region are within strong blends in the direct

image. In the difference image the blends have gone

away, leaving just the residual positive or negative

image at the position of a variable star, depending

upon whether it was brighter or fainter than average

respectively in this individual frame. The advantage

of working with difference images should be clear

in this context. If attempting to extract photome-

try for a strongly blended star in the left panel, one

would need to either: (1) use multiple PSFs fit si-

multaneously to the several blended stars, or (2) use

an aperture large enough to encompass the full blend.

The drawback with multiple PSF fits is that one must

know the shape of the PSF extremely well, and cor-

rectly evaluate it for dithered, under-sampled data in

order to obtain a good result. With aperture photom-

etry on a blended star much excess noise will be in-

cluded through having to use a large aperture.

For PSF fitting, or aperture photometry in the dif-

ference images it is necessary to know the accurate

positions of all stars for which differential intensity

estimates are desired. I assume that an excellent star

list consisting of intensities and good (x 
y) positions

are available from separate analysis. Aperture pho-

tometry can then be obtained by centering a circular

aperture of radius Rap on the nearest integer position

of the star, and forming a sum in the difference im-

age:

dIap = (
,

r1Rap

dIi� j).Inorm (5.13)
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thus providing a fractional measure, dIap, via sum-

ming the difference image counts and ratioing this

to the sum over the direct model image. The nor-

malization to expected direct counts is: Inorm =% r1Rap
f (�xi� j 
 �yi� j). If a very small aperture is used,

then it would be advisable to use adjustments for par-

tial pixel inclusion at the outer radius.

I usually carry several aperture photometry mea-

sures using a range of aperture sizes, and then down-

select on a star-by-star basic to the one that provides

the smallest noise level.

A PSF fit can be obtained as:

dIps f = (
,

r1Rap

wi� j ps fi� jdIi� j. ,
r1Rap

wi� j ps f 2
i� j).Inorm

(5.14)

where the weights, wi� j are set simply as the inverse

total variance as in Equation 5.4.

The ps fi� j can be adopted from an analytic approx-

imation to the general PSF, but needs to be carefully

evaluated for the precise position of the star to be

fit using a combination of x 
y information from the

master star list and the unique registration offsets for

each frame. In practice, for these HST data that do

not show huge field-dependent PSFs, I have taken a

single, bright and unsaturated star near field center,

and used its model evaluated from Equation 5.1 to

define the PSF. In this approach one must properly

take into account the relative sub-pixel shifts of the

fiducial PSF star, and the target star to be fit. (This

is one of several items that should be done better, at

least in principle.)

5.5 False Positive Elimination from

Difference Images

A primary reason for carrying DIA is that it is likely

to provide an invaluable tool for eliminating a signif-

icant fraction of false positives that arise from the

diluted signal of much fainter, background eclips-

ing binaries. Using the appropriate sums over dif-

ference images to isolate the variability signal can be

used to accurately determine the position of the in-

trinsic variable. Consider the simple case of having

detected a weak sinusoidal signal in a star of inter-

est. The problem at hand is to develop a test to deter-

mine if the apparent signal more likely results from

a background, previously unidentified variable (thus

a false positive). The approach here is to make opti-

mal use of the apparent signal characteristics to max-

imize contrast in a sum over individual difference

images. For the sinusoidal signal case this could be

done by forming two summed images: (1) all of the

difference images at times within 10% of the phase

of peak intensity, and (2) all of the difference im-

ages at times within 10% of the minimum intensity.

Then the highest contrast version of the variable star

would simply be obtained as the difference of these

two sums. If the position of the resulting summed

difference image signal is spatially offset in a statis-

tically significant way from the centroid of the direct

image (formed as a simple average over all of the

images used in the difference of difference images),

then the variability is not coincident with the bright

star, and a false positive has been eliminated.

The conceptual advantage to working in differ-

ence image space, as compared to comparing sums

over direct images, is that in DIA the position of the

differential signal will be coincident with the back-

ground object. Working in direct image space the

bright image would be pulled toward the source of

variability only by an amount equal to their separa-

tion multiplied by the relative intensity. Since we

care about cases in which the background star may

be 10,000 times fainter than the star of interest, with

a separation of 8 arcsecs (as an example), the vari-

able would pull the centroid by 0.0008 arcsecs, or

0.0002 pixels in the direct image during peak vari-

ability. In the summed difference images the vari-

ability signal will be offset from the primary star by

8 arcsecs, or two full pixels. While in principle the

same information content may formally exist in the

two cases, it will surely be easier to recognize the re-

ality of a false positive in the DIA where the location

of the putative contaminating star is directly indi-

cated. For an example of DIA in providing the loca-

tion of a faint, background variable that was not de-

tected until pursuing false positive elimination tests,

see Fig. 5.2 (also Figure 1 of Edmonds et al 2002).

In the original HST data on 47 Tuc with WFPC2 the

star corresponding to the variable is not visible in di-
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rect, averaged images, but in the sums of difference

images chosen at specific phases to accentuate the

variability the faint variable is very obvious. In this

case there are three stars with a total intensity of over

200 times that of the variable within a radius of 0 �**2,

and within 0 �**5 13 stars total 800 times that of the

mean intensity of the variable. The PSF full-width-

half-maximum in these images is about 1.5 pixels, or

0 �**7.

Figure 5.2: Illustration with HST WFPC2 data from

the 47 Tuc observations to detect ‘Hot Jupiters’. The

left panel shows the sum of several difference images

selected to be near the peak of variability, minus the

sum of an equal number near minimum for this vari-

able. The circle indicates a diameter of 5.5 pixels, or

0 �**25. The right panel is an average of the same direct

images (with intensities scaled down �1000 relative

to the difference image), the circle shows the same

region as in the left panel. The variable is obvious in

difference images, not visible in direct images.

For the case of pursuing false positive elimination

on candidate transit signals the procedure would be

to sum over all of the difference images from within

the time span of the candidate transits (and take the

negative of this in order to deal with a positive sig-

nal). The nominal positional error for x
y centroids

via PSF fits is the characteristic PSF scale divided

by the photometric signal-to-noise (King 1983). For

Kepler photometry the characteristic PSF scale is

about one pixel, and the smallest signal that will be

believed as a candidate transit (averaged over 3 – 4

individual transits) is about 8� , therefore the error

on positions will be (to within factors of less than

two) 0 1/8 pixel. In general terms it should there-

fore be possible to detect position shifts not consis-

tent with zero, when the offsets are greater than 1/2

pixel. Therefore, to this first level of approximation,

only background stars within about the central pixel

area of typically 20 pixels summed for the time se-

ries, cannot be sieved for false positives. Once the

background variable is well off the peak of the bright

star, the signal-to-noise of the differential photomet-

ric, or relative positional offset signal will be higher

than the value contrasted to the full signal of the pri-

mary target, thus further improving the power of this

approach.

In general it will be necessary to perform the

DIA test for false positives by doing a full, properly

weighted PSF fit in which intensity and x
y are di-

rectly solved for with proper error estimation. There

is a class of potential signals in target stars from

‘background’ objects that DIA will likely not be use-

ful for. If a nearby very bright star, say 7th magnitude

for Kepler, that we do not derive photometry for has

a low amplitude eclipse, then the wings of its PSF

could supply sufficient signal to nearby stars that we

do follow, to yield an apparent transit in the target

star. Since the contamination is spread fairly uni-

formly over our small aperture, the centroid analysis

on the suspect transit signal would not pick up a shift.

We might detect this via correlated (false) signals in

a group of stars near the bright contaminating stars.

We might also trust that we could know whether

any stars in the Kepler field of view brighter than

those we will follow (8th magnitude if we include

the faintest subset of saturated stars) are short period

binaries capable of showing contaminating events.
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5.6 Hot Pixel Tracking

Experience from HST indicates that false positives

arising from hot pixels, or significantly increased

noise from a hot pixel within a photometric aperture

will be rare (see Gautier and Gilliland 2004).

We have tentatively decided not to track hot pixels,

at least not in the sense of trying to feed the results

back for potential use in reprocessing of the image-

level data at the Data Management Center. Nonethe-

less, the SOC will surely want to invoke some level

of hot pixel tracking to serve two purposes: (1) Hav-

ing an easy means at hand for testing for false signals

from a hot pixel with a pathological temporal behav-

ior which could mimic isolated transits, and thus in

conjunction with noise events lead to false positives.

(2) Maintaining a detailed general analysis of the be-

havior and growth rate of hot pixels that would be

used to make decisions regarding annealing if this

capability is maintained in hardware.

In general terms I would envision the following

types of hot pixel tracking (more generally ‘hot’

might be replaced by ‘bad’ here):

1. To track the general build up of hot pixels in

time a sum of difference images can be formed

that consists of the final 24 hours within a quar-

terly pointing minus a sum of 24 hours from

early in the roll period. On a pixel-by-pixel ba-

sis it will be possible to form the ratio of late

minus early mean intensity ratioed to the noise

level, pixels at several sigma levels of signifi-

cance likely represent a hot pixel that has turned

on and stayed on as a result of radiation damage

at some point in the intervening three months.

Should it be of interest to attempt correcting for

this, an edge detection algorithm could be run

over the time series of intensity for the single

pixel in question from the difference images to

isolate when it turned on.

2. Similarly, a ‘chi-squared’ map can be made

from the difference images over the full quarter

by evaluating the pixel-by-pixel standard devi-

ation and ratioing this to the expected noise on

each pixel. This will turn up some variables,

and flaky or hot pixels.

3. In the same sums discussed in §5.5 intended

to provide a sum of differences at phases to

accentuate the candidate signal, an inspection

should be performed to test against the unlikely

prospect that the candidate signal arises from

pathological behavior of a hot pixel that turns

on and off to mimic a transit. Since in this

case the resulting signal would be isolated to

one pixel (moderated by charge diffusion), it

should be easy to flag such cases (sensitivity is

compromised in this step by having a strongly

under-sampled PSF, in the case of wanting to

discriminate against the possibility that the cen-

tral pixel is at fault).

5.7 Unique Complications of the Ke-

pler Data

In comparison to HST data, the Kepler data are ex-

pected to provide a generally well-posed basis for

DIA. However, there are a number of areas in which

the 7 – 8 day HST-based observation sets do not pro-

vide good analogues.

One certain complication is that some parts of the

Kepler focal plane will experience drifts from dif-

ferential velocity aberration within the three month

rolls that are larger than the expected scale of 15-

minute to 15-minute integration jitter. A difference

image can best be formed from using a large ensem-

ble of frames at pointings that span the position of

the individual image; drift in time will always com-

promise this to some degree at the extrema in time.

It might be best to break the data into multiple seg-

ments, ideally maintaining a ‘rolling center’ for the

bulk of the data. For example it might well be rea-

sonable to form difference images for one week in-

tervals using all the images from three week periods

centered on the target week, and advancing the block

one week at a time in a rolling fashion. An alter-

native would be to treat the full quarter in the sur-

face fits of Equation 5.1 building in enough terms to

track both the intensity changes associated with mi-

nor offsets integration-to-integration, as well as from

the larger scale drifts from differential velocity aber-

ration.
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If the PSF changes in a significant way as a func-

tion of time in the Kepler data it may be more dif-

ficult to deal with, than with the HST data. With

the HST data we always had dithers that provided

good sampling of the full sub-pixel phase space of

x 
y offsets. With Kepler we do not expect to have

anything remotely close to full sub-pixel phase space

coverage. This means that it will not be possible to

define a simple over-sampled image, and it would

therefore be potentially much harder to do something

reasonable along the lines of PSF compensation as

discussed in §5.3. Since the only PSF changes antic-

ipated for Kepler are slow drifts, we can assume that

we will not need to design for active PSF compensa-

tion as was done for HST data.



Chapter 6

An Introduction to Detection Theory

This chapter introduces basic detection theory

from the standpoint of testing a simple binary hy-

pothesis in the presence of White Gaussian Noise

(WGN). The concept of a detection statistic is intro-

duced and the properties of the simple matched filter

are explored. The problem of setting a threshold is

discussed and an empirical approach is put forth to

handle the case of detecting transiting planets. The

problem of detecting a deterministic signal in col-

ored Gaussian noise is then described, and the prob-

lem of designing a whitening filter is discussed.

6.1 Simple Binary Hypotheses for

WGN

In this section we introduce the simple matched fil-

ter as the solution to binary hypothesis problems for

additive WGN. Throughout this discussion we will

assume that the data consists of measurements x(n)

for n = 1 
 � � � 
N, and that there are two possibilities

denoted H0 and H1. Under the null hypothesis, H0,

the data consists solely of noise, w(n), while under

the alternative hypothesis, H1, the data consist of a

combination of noise and the signal of interest, s(n),

H0 : x(n) = w(n)

H1 : x(n) = w(n) + s(n) 
 (6.1)

where w(n) is zero-mean WGN with variance �2
w.

The task before us is to design an algorithm that

will detect the presence of the signal in the obser-

vations. What is a detection algorithm? Essentially

it is a set of mathematical computations that trans-

form the data set, x(n), into a scalar value, T , called

the detection statistic, which is compared against a

threshold, 2 to detect s. Given the properties of the

noise and the transformation yielding T , it is possi-

ble to determine the distribution of T and assess the

significance of any value observed for T . Note that

T is a random variable, since we are dealing with a

stochastic process, w(n), embedded in the data set.

Additionally, T should be a scalar; that is, T should

summarize all the available information about the

phenomenon of interest and answer the question: Is

s present in x or not? In this sense, x(n) is not re-

stricted to being a time series: it could be a combina-

tion of measurements from different instruments or

bandpasses. What is important is that the computa-

tion of T take into account all the relevant informa-

tion available with which to make the decision. Once

T is determined, it is compared to a threshold 2 , and

if T exceeds 2 , we accept H1 and say that we’ve de-

tected the signal of interest. On the other hand, if

T is less than the threshold, we reject the alterna-

tive hypothesis and say that s is not present in x. A

major problem aside from determining the mapping

from x to T is determining the appropriate threshold.

This depends on the desired false alarm rate, which

depends on the statistical distribution of T in the ab-

sence of a signal. The simple case considered here

has a closed form solution for both the optimal de-

tector and for setting the threshold.

A well-known result from detection theory (see,

e. g., 68) is that if s(n) is known, the optimal detector

is a simple matched filter of the form

T =
xT s�w 3sT s


 (6.2)
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where we’ve used vector notation to denote the time

series [i. e., x in place of x(n)]. In terms of the vector

space underlying the observations, T is the dot prod-

uct of the data vector with the signal vector, normal-

ized by the product of the standard deviation of the

measurement noise with the magnitude of the signal

vector. Now the question is how to interpret T ? T is

a linear combination of Gaussian random variables,

hence it also is Gaussian (88). We need only spec-

ify the mean and standard deviation of T under each

hypothesis in order to fully characterize the perfor-

mance of the detector. Under the null hypothesis,

x(n) is composed entirely of noise, so that the ex-

pected value of T is given by�T 	H0 = 4 wTs�w 3sTs 5
= 6wT7 s�w 3sTs

=
0Ts�w 3sTs

= 0
 (6.3)

where ��	 is the expectation operator. The variance

of T under H0 is given by8 9
T − :T ;2<

H0
= = > wTs�w 3sTs?2@
=

sT 6w wT7s�2
w sTs

=
�2

w sTs�2
w sTs

= 1 � (6.4)

Under H1, the expected value of T is�T 	H1 = 4 (w + s)T s�w 3sTs 5 =

9�w	+ s;T
s�w 3sTs

=
0Ts + sTs�w 3sTs

=
3sTs�w

� (6.5)

The term �T 	H1 is often called the Signal to Noise

Ratio (S/N) of the signal s, and together with the

noise distribution, determines the detectability of s.

Similarly, the variance of T under H1 is given by

Equation 6.6.8 9
T − :T ;2<

H1
= = A(w + s)T s�w 3sTs

−
3sTs�w B2@

= = >(w + s)T s�w 3sTs ?2 @
−

sTs�2
w

=

8 9
wTs + sTs;2<�2

w sTs
−

sTs�2
w

=
sT 6w wT 7s + 2 �w	T

s sTs +

9
sTs;2�2

w sTs

−
sTs�2

w

=
�2

w sTs + 20Ts sTs +

9
sTs;2�2

w sTs
−

sTs�2
w

=
�2

w + sTs�2
w

−
sTs�2

w

= 1 �
(6.6)

Thus, T is of unit variance under either H0 or H1,

and the two corresponding distributions of T are sep-

arated by the S/N of the signal to be detected. The

distance between the two distributions determines

the detectability of s. Figure 6.1a shows the prob-

ability density distributions under H0 and H1 for a

signal with an SNR of 4� . Each time we test for

the presence of s, we are drawing a random number

from either the distribution governed by H0, or the

one governed by H1. The false alarm rate for our de-

tector is the area under the curve of the PDF for H0

to the right of 2 , while the detection rate is the area

under the curve of the PDF for H1 to the right of 2 .

The higher the mean S/N of s, the higher the proba-

bility of detecting it for a given threshold. Both the

false alarm rate PFA and the detection rate, PD are

functions of 2 . We can plot PD versus PFA to exam-

ine the relationship between these two quantities as

a function of S/N, as is shown in Fig. 6.1b.

For problems such as transit detection, where the

probability that the desired signal is present in the

data is not known, or is poorly constrained, the

most common method for establishing the detection

threshold is the Neyman Pearson criterion. The trick

is to choose a value for 2 that maximizes the detec-

tion rate while achieving the desired false alarm rate.
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Figure 6.1: Panel a) Probability density distributions for the null statistics and detection statistics of a 4�
signal. The threshold, 2 determines the false alarm rate and the detection rate of the detector. Panel b)

Receiver operating curves (ROCs) for the binary hypothesis problem for additive WGN. The curves for

signal S/N’s of 0� , 1� , 2� and 4� are shown by the solid, dashed, dot-dashed, and dashed, respectively. As

the S/N increases, we are able to achieve higher detection rates for a given false alarm rate.

With Equations 6.2-6.6 in hand, we are in a position

to specify the detection threshold, 2 . Since T is unit-

variance and Gaussian under both H0 and H1, we

can easily calculate both the false alarm rate and the

detection rate. Under H0, the chance that T � 2 is

given by

PFA =
132 C D EF exp(−y2.2) dy
 (6.7)

while the probability that s(n) will be detected if

present is given by

PD =
132 C D EF−GT H exp(−y2.2) dy� (6.8)

The threshold is simply selected to achieve the de-

sired false alarm rate. For example, given a signal

with an SNR of 4 � and a desired false alarm rate of

1 �10−4, 2 = 3.72 � , and so PD = 0�61. If the location

of s(n) within the data stream is unknown, then the

matched filter of equation 6.2 can be implemented

by correlating a normalized version of s(n) with the

input data stream. Another name for this implemen-

tation is a correlation receiver. For the case of WGN,

the resulting matched filter has a constant false alarm

rate (CFAR), which is a desirable property for detec-

tors. In searching for transiting planets we are faced

with the same problem of not knowing when the

transits occur, and so must apply the matched filter

at all time steps. The analysis is complicated, how-

ever, by the desire to search for periodically spaced

transits. Fortunately, there are Monte Carlo analy-

sis techniques to establish the effective number of

independent statistical tests conducted in searching

a light curve for transiting planets over a fixed pe-

riod range (62). This allows us to set an appropriate

threshold to control the total number of false alarms,

as desired. This topic is further explored in section

6.3.

6.2 Colored Gaussian Noise

In this section we provide generalizations of the re-

sults from the previous section (6.1). We still have

a binary hypothesis (for each test), but w(n) is no

longer restricted to be white, although we assume

that it is Gaussian. Colored Gaussian noise can be

modeled as the result of filtering WGN through a lin-

ear but possibly time-varying filter (50). The filtered
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noise process may possess an auto-correlation ma-

trix with non-zero off-diagonal entries. In this case,

a matched filter provides the optimal detector, but it

has a different form from that of equation 6.2:

T =
xT R−1s3sT R−1s

(6.9)

where R is the autocorrelation matrix of the noise,

w(n). In order to interpret equation 6.9, note that

since R is non-singular and symmetric, it possesses a

square root, so that Eq. 6.9 can be rewritten as

T =

9
R−1I2x;T

9
R−1I2s;& 9

R−1I2s;T
9
R−1I2s; =

�xT�s3�sT�s 
 (6.10)

where �x = R−1I2x and �s = R−1I2s are ‘whitened’ ver-

sions of the data and signal vectors. Thus, the opti-

mal detector consists of the cascade of a whitening

filter with a matched filter. The difficulty lies in de-

signing the whitening filter itself, as the correlation

matrix R is often unavailable. It is important to note

that the whitening filter may distort s, and that the

resulting detector seeks the transformed version of s.

The results of §6.1 hold, however, with respect to the

detectability of �s.

If the mean value and the correlation structure

of the noise process are stationary (i. e., constant in

time) and certain additional mild conditions are met,

equation 6.9 can be expressed in the frequency do-

main as per Kay (67):

T = D J−J X (K )SL(K )dK
P(K )

. D J−J S(K )SL(K )dK
P(K )



(6.11)

where X (K ) and S(K ) are the Fourier transforms of

the data and signal, respectively, ‘M’ denotes com-

plex conjugation, and P(K ) is the power spectrum of

the noise. Kay (67) suggests an adaptive matched

filter based on equation 6.11 using a smoothed peri-

odogram to estimate P(K ). The main difficulty with

designing the whitening filter in the frequency do-

main is that the statistics of w(n) may not be sta-

tionary. Indeed, the solar irradiance clearly exhibits

nonstationary behavior over the solar cycle. We can

expect that other solar-like stars will exhibit nonsta-

tionary behavior. In Chapter 7 we detail a wavelet-

based, adaptive matched filter that constructs a time-

varying whitening filter by analyzing the noise power

in each orthogonal channel of a filterbank imple-

mentation. This approach is similar to the familiar

graphic equalizer of a stereo system where the user

can adjust the volume of each band independently of

the others. In our case, the ‘equalizer’ scales the in-

put of each channel so that the outputs have equal

power density. Additional details are deferred un-

til chapter 7. The next section discusses a solution

for establishing the threshold for transit photometry

campaigns.

6.3 Setting Thresholds for Transit

Searches

In this section we discuss the problem of determin-

ing the equivalent number of statistical tests con-

ducted in searching a photometric data set for tran-

siting planets. A similar problem is encountered in

detecting sinusoidal signals in noise-corrupted time

series. Horne & Baliunas (56) proposed a Monte

Carlo technique for determining the effective number

of independent frequency bins in the Lomb-Scargle

periodogram of a time series, an essential step in de-

termining an appropriate detection threshold and for

assessing the statistical significance of any peak in

the periodogram. Here we propose an analogous ap-

proach for the transit detection problem. To open

the discussion we review some basic detection the-

ory relevant to the problem and then illustrate var-

ious facets of the problem for non-Gaussian noise.

We provide an argument supporting the validity of

the results derived for white Gaussian noise to more

general cases of colored non-Gaussian noise. We

proceed with the case of white Gaussian observation

noise, giving a prescription for determining the ef-

fective number of independent tests. This is followed

by several examples drawn from actual or anticipated

observations.

If we wish to detect a deterministic signal in a

noisy data set where the noise is Gaussian (colored

or white), the optimal detector consists of a pre-
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whitening filter followed by a matched filter detec-

tor (c. f., 68). For the transit detection problem, a

whitening filter can be thought of in terms of de-

trending the light curve to make it possible for a sim-

ple matched filter to detect a transit. Simple matched

filters do not take into consideration points ‘out of

transit’. Thus, if the transits are superimposed upon

a slowly-varying background with large excursions

compared to the depth of transit, and if no prewhiten-

ing is performed, the matched filter will have a diffi-

cult time distinguishing transits from negative excur-

sions occurring on longer timescales. The details of

implementing a whitening filter depend a great deal

on the specific observation characteristics: the conti-

guity of the data set, the uniformity of the sampling,

etc. All whitening filters represent an attempt to use

‘out of transit’ points to predict the flux ‘in transit’,

i.e., whitening filters presuppose a knowledge of the

correlation structure of the observation noise. Here

we will assume that the noise is white or has been

whitened. Now if the noise is not Gaussian, this de-

tector may not be optimal. However, well-sampled

photometric observations are often moderately char-

acterized as Gaussian once outliers caused by cosmic

rays and poor observing conditions are removed. In

any case, time domain matched filters or their equiv-

alent are the dominant detection strategies employed

in this area. Thus, it is fruitful to consider this model

given its popularity. We will further assume that the

data has been treated in such a way that the tran-

sit pulse shapes are well preserved, or that the ef-

fects of the pre-whitening filter on the shape of the

"whitened" transit are known. The search for tran-

sits of a given star’s light curve, then, consists of

convolving the light curve with a sequence of model

transit pulses (distorted in the case of a pre-whitener

that does not preserve transit shape) spaced by each

trial orbital period. Equivalently, the light curve may

be convolved with a single model transit pulse and

then folded at each trial period. The resulting de-

tection statistics are examined for large positive val-

ues, the location of which gives the orbital period and

phase of candidate planets. Equation 6.12 provides

the formulation for a simple matched filter:

l =
b �s�3s � s =

1� b � ŝ
 (6.12)

where b is the data vector, s is the signal to be found,

and � is the standard deviation of the zero-mean,

white Gaussian noise. Note that this is simply the

length of the projection of the data vector along the

direction of the signal vector. Under the null hy-

pothesis (no transits), l is a zero-mean, unit-variance

Gaussian random variable. Likewise it can be shown

under the alternative hypothesis of s being present

that l is a unit variance Gaussian random variable

with a mean equal to 3Es.� . Here, Es = % i s2
i is

called the energy of s. For transits consisting of rect-

angular pulse trains, equation (6.12) collapses into

the square root of the number of points in transit

times the mean data value during transit divided by

the standard deviation of the observation noise.

In applying the detection algorithm one will in

practice construct a rather large number of detection

statistics in order to densely sample the region of the

parameter space of interest. For example, suppose

we have 6 weeks of data from a ground-based pro-

gram at a resolution of 4 hr−1 and 12–hours of ob-

servations each night and search for transiting plan-

ets with periods between 2 and 7 days. The step

size in phase should be about 1.4 a transit duration,

or 45 min. The step size in trial period should be

set so that the furthest transits from a fixed central

one do not shift more than about half a transit du-

ration from those for the previous trial period. The

outermost transit pulses shift by one half the num-

ber of periods multiplied by the change in period.

The average step size in period for this case is (3

hours/2)/(6 weeks/2/4.5 days) = 19 minutes, giving� 373 trial periods. The average number of tests

at any period is 4.5 days/(3 hours/4) = 144 tests.

Thus, there are roughly 53,000 test statistics required

per star to retain good sensitivity to all possible pe-

riod/phase combinations. For 5,000 stars, then, there

are � 3 � 108 test statistics constructed. The tests

for each star are not independent, however, as every

trial period will test for a transit at a given point in

time for some trial phase. Thus the set of detection

statistics for such a search is highly correlated and
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possesses a complex web of correlations.

This is illustrated by the following example. Con-

sider star Cyg1433 from the NASA Ames’ Vulcan

Survey. Vulcan 1433 is a binary consisting of two

late-F dwarfs undergoing grazing eclipses (Caldwell,

Borucki, & Lissauer 2000). This star exhibits a

transit-like feature with a depth of 3.19%, a duration

of 3.36 hours and a photometric period of 1.957 days

(the orbital period is twice this value). The folded

light curve for this star is displayed in Figure 6.2a

with the phase normalized such that the ‘transits’ oc-

cur at a normalized phase of 0.25. By conducting a

search for planets with orbits between one and seven

days on a grid with 7.5-min spacing, we test 885,504

different models against the light curve. Figure 6.2b

shows the maximum detection statistic obtained for

each period sought for 2.5-hour transits. The maxi-

mum statistic obtained is 27 �7 � at a period of 1.96

days. Strong peaks are observed at rational harmon-

ics of the fundamental photometric period, and the

curve is elevated well above that of the bottom curve

in the figure, which is the result for Cyg1433’s light

curve once the transits are removed from the data.

The multiple peaks in the top curve, which might be

confusing at first sight, actually provide confirmation

that the signal being picked up is caused by a peri-

odic set of pulses of comparable depth. For most of

the searches discussed in the remainder of this paper

we set up a nonuniform grid with respect to orbital

period based on the following criterion. The cor-

relation coefficient between a test at a given phase

and period and the highest-correlated test at the next

largest period is no less than 0.75. This dictates the

step size in period for a given period and number of

transits observed, and yields a maximum reduction

in apparent SNR of only 12.5%.

We define the quantity lmax as the maximum de-

tection statistic over all tests of a light curve:

lmax = maxi�li�� (6.13)

The complementary cumulative distribution function

(CCDF), F l max (x) = 1 − Fl max(x) of lmax interests us

here 1. F l max(x) is the false alarm rate of a single

1Throughout this paper the term density refers to the prob-

ability density function of a random variable. That is, given a

search as a function of the detection threshold, x. The

question is, how many independent tests, NEIT, were

effectively conducted in performing the search? By

this we mean, how many independent draws from a

N(0,1)2 process are required in order for the distri-

bution of the maximum of the NEIT draws to match

the distribution of lmax over some given range of the

x–axis containing the desired false alarm rate? We

call this process Nmax and the corresponding distri-

bution, FNmax(x;NEIT), and density, fNmax (x;NEIT). We

do not require that the two distributions match over

the entire x–axis, just over the portion of interest.

The domain of interest warrants further discus-

sion. The goal of this endeavor is to choose an appro-

priate threshold for individual tests. Strictly speak-

ing, if the observation noise is WGN, the comple-

mentary distribution F l max (x) provides this informa-

tion directly; the value, x, of lmax for which the sam-

ple CCDF F l max (x) = NFA.Nstars is the appropriate

single-test threshold, where NFA is the total number

of false alarms. We note that in searching Nstars light

curves for planets we are performing Nstars indepen-

dent searches. (If the searches are not independent,

then something has gone wrong with the processing

of the photometric data, as the resulting light curves

should not be correlated, and hence, under the as-

sumption that the observation noise is normal, the

searches must be independent.) If we restrict the sin-

gle search false alarm rate to be NFA.Nstars, the total

expected false alarms is constrained to be equal to the

desired NFA. This reasoning can be extended to in-

dividual tests as well. If the distribution :Fl max can be

approximated by the distribution FNmax (x;NEIT) in the

region near NFA.Nstars, then it is sufficient to choose

the single-test false alarm rate to be NFA.Nstars.NEIT

using the actual single test statistics. Thus the region

of interest is centered on F l max = NFA.Nstars.

random variable y (denoted by boldface type), the density or

probability density function (PDF) is the function defined as the

probability that an instance of y is confined to an infinitesimal

interval about x : fy(x) = limNxO0PP(x Q y Q x +Rx)SRxT. The

term distribution refers to the cumulative probability distribu-

tion function (CDF), Fy(x), where Fy(x) = P(y Q x). The term

complementary cumulative distribution function (CCDF) refers

to Fy = 1 − Fy(x).
2An N(U VW ) distribution is defined as normal (i.e. Gaussian)

with mean U and variance W 2.
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Figure 6.2: Folded light curve for star Cygnus 1433 from the Vulcan campaign (a) and maximum detection

statistics for a search for planets with orbits between 1 and 7 days for this star (b). The light curve is

folded so that the transit-like feature occurs at a normalized phase of 0.25. The maximum detection statistic

obtained for 2.5-hour transits is plotted for each period for the original light curve (top curve) and for the

light curve obtained by removing the transits from the light curve (bottom curve). Note the sharp peaks

appearing at multiples of the fundamental period 1.96 days. The top curve is elevated above the bottom

curve because there is some phase for each period sought corresponding to a model light curve with transits

overlapping at least one of the features in the original light curve.

Now, to derive the distribution FNmax (x;NEIT), we

recall that the joint density of NEIT independent

Gaussian variables X = �xi�i=1�XXX �NEIT
is

f (x1 
x2 
 � � � 
xNEIT
) =

NEITY
i=1

g(xi) 
 (6.14)

where

g(x) =
132C exp(−

1

2
x2) (6.15)

is the PDF of an N(0,1) process (88). The density

of Nmax can be obtained by noting that the probabil-

ity of the maximum of NEIT draws from an N(0,1)

process attaining a value, x, is the probability of any

one of the draws being equal to x times the probabil-

ity that the remaining draws are less than or equal to

x. As the draws are independent, we can write the

density of Nmax by inspection:

fNmax (x;NEIT) = NEIT g(x)G(x)NEIT −1 
 (6.16)

where

G(x) =
132C D x

−E exp(−
1

2
y2)dy (6.17)

is the CDF of an N(0,1) process. The distribution of

Nmax is simply the distribution of an N(0,1) process

raised to the Nth
EIT power:

FNmax (x) = G(x)NEIT � (6.18)

Thus, if the CCDF F l max (x) = NFA.Nstars at x = 2
NEIT Z log [1 −

NFA

Nstars \ . log�G(2)�� (6.19)

If the joint distribution of the tests were known, the

distribution of lmax could be found analytically or

numerically, at least in principle. Given the correla-

tion matrix, C, for the tests, the joint characteristic

function is ](^) = exp�−
1
2
^C^ t �, but the joint den-

sity requires the inverse correlation matrix C−1 (88).

We note that the detection statistics are drawn from

a Npoints–dimensional space, where Npoints is the size

of the data set. Hence, there can be no more than

Npoints linearly independent tests performed over the

data set. However, the parameter NEIT of the process,

Nmax, may be much larger than the number of obser-

vations, Npoints, for a given sampling and planetary
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search, as will emerge from the examples considered

later on. This underscores the fact that statistical

independence of the tests conducted over a search

space is separate from the linear independence of the

signals considered as vectors in the underlying ob-

servation space. For the 6-week-long observations

considered above, there are only � 2 
000 observa-

tions, with � 53
000 tests applied to these points.

Moreover, since there are more tests than points, C

must be singular, and thus, there doesn’t appear to

be a closed-form expression for the joint density of

the tests. In any case, given the large size of the cor-

relation matrix, integrating the joint density or joint

characteristic function either analytically or numeri-

cally is impractical. Below we advocate the study of

the distribution of lmax through Monte Carlo experi-

ments.

Here we argue that the equivalent number of inde-

pendent tests conducted per star, NEIT, is not deter-

mined by the distribution of the observation noise,

and is not strongly influenced by the presence of

(red) colored noise. Appendix E provides a proof

that the distribution of the observation noise does

not affect the value of NEIT. Although the algorithm

we provide in this section to estimate NEIT is not af-

fected by the actual noise distribution, the single-test

threshold must be established by considering the ac-

tual distribution for the detection statistics. We first

note, however, that even if the observational noise is

not Gaussian, we require that it be of bounded vari-

ance and that the light curves have been cleaned of

strong, isolated outliers. Thus, the observation noise

density should be well confined, even if the tails are

longer than that for a Gaussian process with the same

standard deviation. Second, we note that each detec-

tion statistic is a linear combination of several sam-

ples of observation noise. In most practical situations

many samples ‘in transit’ will be obtained simply by

the fine sampling grid applied to ensure good sensi-

tivity to the edges of transit events. For instance, the

examples from the ground-based program we draw

upon feature sampling at � 4 hr−1, giving at least 8

points per transit for transits longer than two hours.

Furthermore, we require in general that several (� 3)

transits be observed. By the central limit theorem

(88), the density of the detection statistics may be

well or moderately characterized as being Gaussian

even in the event that the observation noise on indi-

vidual data points is not. For example, let the obser-

vation noise w(n) be white and drawn from the mixed

Gaussian distribution with density

f (x) = _ 5

8
Ag `_ 5

2
xa +

1

2
g `_ 5

8
xaB (6.20)

and with corresponding distribution

F(x) =
1

2
AG `_ 5

2
xa + G `_ 5

8
xaB � (6.21)

In this case, w(n) is a zero-mean, unit-variance pro-

cess, but is distinctly non-Gaussian. Now consider

1) single transit statistics, l1, for three-hour transits

(12–point pulses) and 2) three transit statistics, l3, for

three three-hour transits (36 samples from the mixed

distribution). Figure 6.3 shows the CCDFs for w(n),

for l1, for l3, and for an N(0,1) process. Note that

the single transit and three-transit statistics are well-

modeled as being drawn from a N(0,1) process even

though w(n) is not a N(0,1) process.

For the case of red noise, if the correlation length

of the noise were comparable to the length of a tran-

sit, we would expect NEIT to be less than for the

case of white noise. Consider a colored noise pro-

cess generated by passing a WGN process through a

low pass filter with impulse response h: wc = w M h.

For this example, assume h is a rectangular pulse of

length 3 hours. In applying a simple matched filter

for single 3-hour transits, we convolve the observed

noise, wc, with the unit-energy signal,

ŝ : lc(t) = k wc M ŝ = k h Mw M ŝ = k h M l(t) 
 (6.22)

where k = 1.3EŝLh is a scale factor chosen to en-

sure that lc(t) is an N(0,1) process under the null hy-

pothesis. The last term in the equality defining lc(t)

shows that it is the (scaled) moving average of the

single event statistic l(t) for white noise. The corre-

lation length of l(t) is half that for lc(t). Thus, as a

time series, l(t) has twice as many independent sam-

ples as does lc(t). Hence, we should anticipate that

the expected maximum value for lc(t) is less than

the expected maximum value for l(t) for the same
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Figure 6.3: Sample and theoretical CCDF’s (false

alarm rates) as a function of threshold, x, for N(0,1)

Gaussian noise (solid line), the mixed Gaussian dis-

tribution in the example in the text (dashed line), de-

tection statistics for a single transit, l1, in noise from

the mixed distribution(dash-dotted line), and detec-

tion statistics for three transits, l3, in noise from the

mixed distribution (dotted line). The distributions

from which l1 and l3 are drawn are 12-point and 36-

point averages of samples from the mixed distribu-

tion, respectively. As more points in the mixed dis-

tribution are combined, the resulting distribution be-

comes more similar to a Gaussian one.

length observation. In fact, this should be true of

any search for multiple transits as well, since multi-

transit statistics are linear combinations of single-

transit statistics. This is borne out by a numerical ex-

ample in which a 4-week observation is considered

with a sampling rate of 4 hr−1 and a search for three–

hour transits with periods between 2 and 7 days is

conducted. Figure 6.4 shows the CCDFs for both

the red and white noise cases, demonstrating that the

equivalent number of independent tests in conduct-

ing a full search is smaller for red colored noise than

for white noise. That is not to say that it is easier

to detect transits in colored noise. Although NEIT is

smaller, the scale factor k in effect reduces the SNR

of a single transit by the same factor, making it more

difficult to detect transits in colored noise with a cor-

relation length comparable to a transit than it is for
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Figure 6.4: Sample CCDF’s for search statistics for

white and red Gaussian observational noise. The

false alarm rate for red noise (dashed line) falls sig-

nificantly faster than for white noise (solid line) as

the threshold is increased. Thus, there are effec-

tively fewer independent statistical tests conducted

in searching the red noise sequence for transits than

there are in searching the WGN sequence.

white noise.

As the assumption of white noise provides a con-

servative estimate for Nmax in the case of red noise,

let us consider WGN noise for the remainder of this

section. Given the number of stars, Nstars, and the

desired total number of false alarms, NFA, we set the

threshold so that the single test false alarm rate is

equal to NFA/(Nstars NEIT). Let us consider some lim-

iting cases for the complementary distribution of the

maximum test statistic. Suppose there is a signal ŝ

we test for in data set b such that b = Aŝ and � = 1. It

follows that lmax = A−1b �b = A−1

&% i b2
i . This will

be the case, or nearly so, if we test for all possible

signals or for a large number of signals that are dense

on the Npoints–dimensional unit hypersphere under-

lying the observations. Consequently, the distribu-

tion of lmax would approach a -–distribution with

Npoints degrees of freedom. This is the distribution

for an incoherent matched filter or ‘energy’ detector

(68) and explains its poor performance in compari-

son with a true matched filter. On the other hand,
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since the set of detection statistics for most transit

searches is a complete set of vectors in the linear

algebra sense, the distribution F l max (x) is bounded

below by FNmax (x;Npoints). The search for planetary

transit trains in most cases, however, is a rather re-

stricted class of possible signals compared to the set

of all possible signals. We should expect it to asymp-

totically approach the distribution for FNEIT
(x) for

some NEIT
�

Npoints. While we do not supply a proof,

we give several examples that demonstrate that Nmax

does, indeed, provide a good model for the distribu-

tion of lmax in the region of interest.

The algorithm for determining NEIT is as follows

1. For the distribution of observational time steps,

construct a synthetic data sequence composed

of independent, identically distributed (i.i.d.)

points drawn from a zero-mean unit variance

WGN process.

2. Examine the maximum detection statistic ob-

tained from this synthetic data set by applying

the simple matched filter algorithm of eq 6.12:

lmax = maxi �x � ŝi� over the desired grid in the

region of the period-phase duration parameter

space of interest.

3. Repeat steps 1 and 2 a large number of times, at

least several tens of the number of stars in the

target sample.

4. Determine the number NEIT of i.i.d. draws

from a WGN process so that the complemen-

tary distribution of FNEIT
(x) matches the sample

complementary distribution function of the set

{lmax} determined above at the point of interest

NFA.Nstars (equation 6.19).

Note that it is not necessary to determine the value

of NEIT to exquisite precision as the CCDF of Nmax

falls rapidly at the false alarm rates of interest to tran-

sit photometry campaigns. Even relative uncertain-

ties of 50% can be tolerated in the estimate of NEIT.

The remainder of this section is devoted to several

examples drawn from actual or anticipated observa-

tions.

6.3.1 NASA Ames Vulcan Camera Obser-

vations

We first consider the case of collecting data for a

ground-based system similar to the NASA Ames

Vulcan Camera where 12 hours of data are obtained

per night at 4 hr−1 over several weeks. Figure 6.5

shows the results of conducting the Monte Carlo ex-

periment above on 1-, 3- and 6-week long sets of

data, searching for planets with periods between 2

and 7 days. Over 105 trials were conducted for each

data set. Taking NFA=1 and a sample of 5,000 stars,

NEIT is approximately 1,900, 24,000, and 79,000, for

1 week, 3 weeks and 6 weeks of data, respectively.

Figure 6.6 shows how NEIT evolves as a function of

F l max for each case. Although the search space is the

same for all three data sets, the longer the baseline,

the greater the resolution in terms of discriminating

between planets with similar periods, and hence, the

greater the number of effective independent statisti-

cal tests. I.e., for longer data sets the correlation co-

efficient between one particular planetary signature

and a second one drops off more rapidly as a function

of period and phase as the parameters of the latter are

varied from those of the former. Thus, the CCDFs,

F lmax (x), for 1-week and 3-week long data sets ‘roll

over’ at smaller values of x than does the CCDF for

the 6-week long data set. Not only are the values

of NEIT smaller for shorter data sets, the threshold

required for the same false alarm rate is smaller as

well. The sample CCDFs appear quite ‘ragged’ at

small values of F(x) because there are only a few

samples available to estimate the behavior in the tail

of the distribution. The number of trials performed

to estimate the distribution must be high enough so

that a reliable estimate for NEIT can be obtained at

the relevant single-search false alarm rate.

6.3.2 Multiple Season Observations

We next examine NEIT for two 12–week seasons of

Vulcan data and the Hipparcos data for HD 209458.

The Hipparcos data consist of 89 points over 3 years’

time, which is much sparser than the sampling for

the Vulcan camera (
�

2000 points per season). Fig-

ure 6.7 illustrates the difference in the behavior of
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Figure 6.5: Sample CCDFs for planetary searches

through 1, 3 and 6 weeks of Vulcan Camera data

(solid curves) along with the theoretical curves for

i.i.d. draws from a Gaussian process (dashed curves)

that best match the empirical curves near a single

search false alarm rate of 1 in 5,000. The effective

number of independent tests performed in searching

through data sets of these lengths, NEIT, is approxi-

mately 1,900, 24,000, and 79,000, respectively.
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Figure 6.6: Equivalent number of independent tests

for data similar to that collected by the Vulcan Cam-

era as a function of the single search false alarm

rate for observations lasting 1 week, 3 weeks and 6

weeks.

F l max for each data set. Over 106 trials were per-

formed in each analysis. The Hipparcos data are

so sparse that in searching for planets with periods

from 2 to 7 days, the sample complementary distri-

bution F l max is matched over a much shorter inter-

val by FNEIT
compared to the two seasons of Vulcan

data (Fig. 6.7a). This is illustrated in panel Fig. 6.7b,

where NEIT is plotted versus the false alarm rate. At

a single-search false alarm rate of 1/10,000, NEIT

is 110,000 for HD 209458, and is 790,000 for the

Vulcan data. The Hipparcos data are so sparse that

the signal space covered by the transit search is a

significant fraction of the total surface of the 89-

dimensional hypersphere underlying the signal vec-

tor space. Thus the CCDF rolls off much slower than

that for F l max until rather small false alarm rates are

reached.

6.3.3 The Proposed Kepler Mission

The proposed Discovery-class Kepler Mission would

observe
�

100
000 target stars in the Cygnus con-

stellation continuously for at least 4 years at a sam-

pling rate of 4 hr−1 (11). The goal of the mission is

to determine the frequency and orbital characteristics

of planets as small as Earth transiting Sun–like stars.

The range of periods of greatest interest is from a

few months to 2 years, with a range of transit dura-

tions from � 5 hr to 16 hr for central transits of plan-

ets with periods over this orbital range. The average

transit duration is 8 hr over these periods, assuming

a uniform distribution of periods. (Note that since

the average chord length of a circle of unit diameter

is C .4, the average duration of a transit is C .4 times

the duration of a central transit which is 13 hours

long at a period of 1 year.) We applied the NEIT

algorithm to examine the statistics of lmax for this

experiment and to estimate NEIT. Figure 6.8 shows

the result for over 106 searches for 8–hr transits for

orbital periods between 90 days and 2 yr, yielding

NEIT � 1 �7 � 107 for a single search. This agrees

with the estimate obtained using Kent Culler’s ap-

proach discussed in the introduction, and is no sur-

prise as the assumptions for his method are met by

this experiment. There is strong agreement between

the theoretical curve and the empirical distribution of
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Figure 6.7: Analysis of multiple year data sets. Panel a) displays the CCDF’s for the HD209458 data set

and for two 12-week observations with the Vulcan Camera spaced one year apart. Although the Vulcan

data consist of 4,000 points, while the HD 209458 data consist of only 89 points, the effective number

of independent statistical tests conducted in searching two seasons of Vulcan data set is only 8 times more

than that for the HD 209458 data set for a false alarm rate of 1 in 104. Panel a) illustrates that the slope of

the CCDF for the Hipparcos data set (dashed curve) is much different than that for the Vulcan data (solid

curve). Panel b) shows the evolution of NEIT with false alarm rate corresponding to the Vulcan data (solid

curve) and the Hipparcos data (dashed curve).

lmax, even for false alarm rates as high as 0.1. Thus,

we estimate that there are � 1 �7 � 1012 independent

statistical tests required in performing the desired

search over 100,000 stars. The corresponding requi-

site single-test threshold is 7�1� for no more than one

expected false alarm for the entire campaign. The

close agreement between the theoretical and the em-

pirical curves most likely stems from the fact that the

signals we are searching for are quite sparse on the

unit-hypersphere underlying the 14,000-dimensional

signal vector space for the simulations.
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Figure 6.8: The sample CCDF for a 4–yr Kepler Mis-

sion searching for 8–hr transits for planets with or-

bital periods between 90 days and 2 yr (solid curve),

along with the theoretical curve for the maximum

of 17 million draws from an N(0,1) process (dashed

curve).



Chapter 7

Detecting Transiting Planets

This chapter draws heavily on Jenkins (60), ’The

Impact of Solar-Like Variability on the Detectability

of Transiting Terrestrial Planets.’ First the intrinsic

variability of the Sun is examined and seen to be non-

white and time-varying. This motivates the develop-

ment of a wavelet-based, adaptive matched filter, for

which the MATLAB source code is included in Ap-

pendix G. Folding the single event statistics to obtain

multiple event statistics is described and FORTRAN

source code to implement this is given in Appendix

C. Monte Carlo techniques for estimating confidence

levels in candidates whose detection statistics exceed

the detection threshold are described, along with pro-

totype MATLAB or FORTRAN code in Appendix F.

7.1 The DIARAD/SOHO Observa-

tions

In order to motivate the development of the adaptive

matched filter will be discussed in §7.2, we describe

the behavior of the Sun revealed by measurements

made by the DIARAD instrument aboard the SOHO

spacecraft. While we expect to observe significant

diversity in stellar variability, we take the Sun’s be-

havior as a proxy for all solar-like stars. DIARAD is

a redundant, active-cavity radiometer aboard SOHO

that measures the white-light irradiance from the Sun

every 3 minutes (41). The second cavity is nor-

mally kept closed and is opened occasionally to cal-

ibrate the primary cavity, which ages throughout the

mission with exposure to the Sun. The instrumen-

tal noise for a single 3 minute measurement is 0.1

W m−2 (Steven Dewitte 1999, personal communica-

tion). The DIARAD measurements considered here

consist of 5.2 years of data that begin near solar min-

imum in January, 1996 and extend to March, 2001,

just past solar maximum.

The data are not pristine: there are gaps in the data

set, the largest of which lasts 104 days, and there are

obvious outliers in the data. In particular, a set of 10

or 11 consecutive, anomalous points appears almost

every 60 days. Each set begins with a point several

W m−2 below the trendline, with the remaining 9 or

10 points lying approximately 6 W m−2 above the

trend line. Nevertheless, the DIARAD time series

is the most uniformly-sampled, lowest noise data set

available. We’ve taken the liberty of removing the

obvious outliers such as the ones occurring every 60

days, and a small number of isolated outliers that ap-

pear to occur randomly. We have not removed some

of the data segments that appear to be corrupted in

more subtle ways. An example of these is given by

data on the edges of gaps in the data set, which often

have atypically large slopes. Fully 83% of the data

samples are available (62% of the missing points are

represented by the three largest data gaps). For our

purposes, a contiguous, completely sampled data set

is highly desirable. This is mainly for computational

convenience (to avoid division by 0 errors), and the

filled-in points are largely neglected in addressing

the detectability of transits against stellar variability.

To that end, the missing points have been filled in

by reflecting a segment on either side of each gap

across the gap. We combine the two segments by

taking the sum of each multiplied by a linear taper

directly proportional to the distance from the closest

edge of the gap. This procedure naturally preserves

46
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Figure 7.1: The time series of solar irradiance as

measured by the DIARAD instrument aboard SOHO

from January 1, 1996 through March, 2001, binned

to 1 hr. Gaps of a day or longer are denoted by the

horizontal segments at 1365.5 W m−2.

continuity of the data, and preserves the correlation

structure to a large degree. Some smoothing of the

small scale structure occurs, however, as the proce-

dure takes the average of two segments of a noise

process. We’ve adjusted the filled-in data to reduce

the amount of smoothing using a technique described

in Jenkins (60).

Figure 7.1 shows the DIARAD time series, binned

to 1 hr. Filled-in gaps of at least a day in dura-

tion are denoted by the horizontal line segments at

1365.5 W m−2. The average solar flux during the

5.2 yr of observation is 1366.6 W m−2. Note that on

this scale, an Earth-sized transit (84 ppm) is 0.115

W m−2. The sample standard deviation of the data set

is 0.5 W m−2. This would seem to imply that detect-

ing Earth-sized transiting planets might be a terribly

difficult, if not impossible task. The solar variability

is not a white noise process, however, and most of

the noise power occurs on very long timescales com-

pared to the duration of a central transit of planets

with orbital periods up to 2 yr about a solar-like star

(2-16 hr). This is made clear by Figure 7.2 which

exhibits the power of the DIARAD time series as

a function of timescale near solar minimum (1996)

and near solar maximum (2000) along with the en-

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
0

10
1

10
2

Time Scale, Days

E
n
e
rg

y
 D

e
n
s
it
y
, 
(W

 m
-2

)2

 10
-3

 10
-3

 10
-2

 10
-1

 10
0

 10
1

 10
2

P
o
w

e
r 

D
e
n
s
it
y
, 
(W

 m
-2

)2
/T

im
e
 I
n
d
e
x

8-hour Transit
12-hour Transit
Solar Min
Solar Max

Figure 7.2: Distribution of power as a function of

timescale from a wavelet analysis of the time series

of solar irradiance as measured by the DIARAD in-

strument aboard SOHO for the years of 1996, near

solar minimum (dash-dotted curve), and for 2000,

near solar maximum (dotted curve). The timescale

labeling is approximate, as no unique definition for

it exists. The distribution of energy with timescale

is also plotted for an Earth-size, 8-hr transit (solid

curve) and for a 12-hr transit (dashed curve). The

area under the transit curves and above the solar vari-

ability curves indicates that the transits are readily

detectable against the solar variations.

ergy at each timescale for Earth-size, 8-hr and 12-hr

transits. These curves were obtained by a wavelet

analysis described in §7.2. Note that at time scales

shorter than 1 day, the ratio of the transit energy to

the power of the solar time series is much greater

than 1. This indicates that transits of Earth-sized

planets are highly detectable against solar-like vari-

ability, with low-intrinsic noise, space-based obser-

vations.

Two important qualities are revealed by this exam-

ination of the DIARAD/SOHO observations: i) so-

lar variability is not white, and ii) solar variability is

not stationary. Any detection scheme which has pre-

tenses of “optimality” or “efficiency” must take these

two crucial characteristics into account or face sub-

optimal performance, and possibly outright failure.

The approach baselined for detection of transiting

planets in Kepler’s data set is an adaptive, wavelet-
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based matched filter. This detector performs a joint

time-frequency decomposition of the data to estimate

the properties of the noise as a function of time, and

then applies a matched filter to the “whitened” data

in the wavelet domain, taking into account the effect

of the whitening filter on the shape of a transit pulse.

This filter is developed in detail in the following sec-

tion.

7.2 An Adaptive Wavelet-Based

Matched Filter

Chapter 6 introduced detection theory for the prob-

lem of detecting a known signal in additive WGN,

and then discussing the issues of non-white, non-

stationary Gaussian noise. There it was shown that

for non-white, stationary noise, an optimal detec-

tor can be formed in the frequency domain using an

estimate of the PSD of the measurement noise (in-

cluding intrinsic stellar variability), as per Kay (67).

Here we argue that for time-varying noise, especially

noise processes with steep spectral slopes, an explicit

time-frequency representation is desirable.

Kay (67) suggested an adaptive matched filter

based on equation 6.11 using a smoothed peri-

odogram to estimate P(K ). This approach is fine

for noise processes that are weakly-colored or white,

but not for 1/f-type processes such as solar variabil-

ity. Simply smoothing the periodogram with a mov-

ing average filter tends to reduce the apparent spec-

tral slope of these processes significantly, yielding an

inaccurate power spectrum estimate. Alternatively,

Kay’s method may be modified by using multita-

per spectrum approaches to estimate the noise power

spectrum, minimizing the “leakage” of the effective

data window. Several choices for tapers are avail-

able, including sinusoidal families (97) which ap-

proximate optimal tapers minimizing the asymptotic

bias of the estimate. Alternatively, prolate spheroidal

sequences are widely acknowledged to yield optimal

spectrum estimates minimizing the spectral leakage

outside a given resolution bandwidth, and have been

used with great success to examine p-mode oscilla-

tions in the solar power spectrum (see, e. g., 109).

While good results can be obtained using a modi-

fication of Kay’s approach, there are computational

issues to consider. The length of the window used

to estimate the periodogram must be chosen in some

way, as well as the number of adjacent data segments

to be used to provide additional smoothing of the

power spectrum estimate. Moreover, the sensitivity

of the detector to a transit-like signal depends on the

location of the transit pulse within the window. It

would seem that for the best results, a periodogram

centered at each possible transit location needs to be

computed, further increasing the computational bur-

den. We propose a wavelet based approach using an

overcomplete wavelet transform (OWT) of the data

and the signal to be detected. The wavelet domain is

a natural one for designing time-varying filters since

it is a joint time-frequency representation of a wave-

form. In addition, the overcomplete wavelet expan-

sion admits a filterbank implementation with a direct

interpretation in terms of equation 6.11. As such, the

properties of Kay’s adaptive detector should hold for

the detector described here; namely that the detector

would be asymptotically efficient (ideal) if an inde-

pendent realization of the noise process were avail-

able.

First, let’s review wavelets briefly. A wavelet

transform is similar to the Fourier transform in that

the wavelet coefficients are the projection of the orig-

inal data vector onto a set of basis functions. In the

case of wavelets, however, the basis functions are

concentrated in time as well as in frequency. More-

over, unlike the Fourier basis, there is an infinity of

possible choices for wavelet bases that trade off res-

olution in frequency for resolution in time. (This

also implies that there is not a unique definition of

the term “time scale” for wavelet transforms as there

is for “frequency” for the Fourier transform.) The

first orthogonal non-trivial wavelets were obtained

by Debauchies (29) who was interested in obtain-

ing a continuous wavelet transform through itera-

tions of a discrete time algorithm. Somewhat ear-

lier, however, Smith & Barnwell (106) succeeded

in designing critically sampled, perfect reconstruc-

tion, octave band filter banks. Debauchies’ wavelets

are special cases of those filters meeting the condi-

tions specified by Smith and Barnwell, such that the

limiting process is a continuous time wavelet trans-
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form. The methodology we adopt is based on a fil-

terbank implementation of an overcomplete discrete-

time wavelet transform. Hence, we’ll approach the

subject from the viewpoint of filterbanks as per Vet-

terli & Kovačević (108).

Figure 7.3 shows a dyadic, critically sampled filter

bank. In the first stage in the process, the time series

x(n) is separated into two channels by filters with re-

sponses HL(K ) and HH(K ). Each filtered signal com-

ponent is then downsampled by a factor of two (es-

sentially, every other sample is discarded). The high-

pass signal, x1(n) is not subjected to further filtering

in the analysis section. The lowpass signal, however,

is treated in an identical manner as its predecessor,

x(n), and the process is iterated M − 1 times, for a to-

tal of M output channels. For our purposes, all we

need to know is that HL(K ) is a lowpass filter and

that HH(K ) is a highpass filter, and that these filters

isolate complementary frequency components of the

time series x(n). Corresponding to HL(K ) and HH(K )

are reconstruction filters GL(K ) and GH(K ) such that

the signal x(n) is exactly equal to its reconstruction 
x(n). The equivalent filter for each channel in Fig-

ure 7.3 can be determined explicitly, and we’ll refer

to these filters from the highest center frequency to

the lowest as �h1(n) 
 h2(n)
 � � � 
 hM(n)�. The output

signals corresponding to these filters will be desig-

nated �x1(n)
 x2(n) 
 � � � 
 xM(n)�, respectively.

Figure 7.4 shows the frequency response of each

filter in a filterbank implementation of a discrete-

time wavelet expansion of a time series out to M=16.

Panel a shows the frequency axis on a linear scale,

while panel b is plotted with a log scale for the fre-

quency axis. The filters enjoy a “constant-Q” prop-

erty. That is, the quality factor (Q) defined to be the

ratio of the center frequency of a bandpass filter to

its full width at half maximum, is constant for all but

the final filter. In the following analysis, we omit

the decimation operators (‘b 2’) in Figure 7.3a, and

replace each filter following a decimation operator

with the result of upsampling it by 2 (i. e., we re-

tain the same effective filters as those of the critically

sampled filter bank). This leads to an overcomplete

wavelet expansion of a filtered time series. The price

we pay is that the representation is highly redundant,

increasing the computational burden, since we must

now filter the samples discarded in the critically sam-

pled implementation. The gain achieved is the shift

invariance of the OWT of a time series. Therefore,

the OWT of the convolution of two time series is the

same as convolving the OWT coefficients of one time

series at each scale with the corresponding coeffi-

cients of the other time series. This is not the case

for the critically sampled WT. To make this explicit,

let c �x(n)� = �x1(n) 
 x2(n)
 � � � 
 xM(n)�
 (7.1)

be the overcomplete wavelet transform of x(n) where

xi(n) = hi(n) M x(n)
 i = 1 
 2
 � � � 
 M 
 (7.2)

and ‘M’ denotes convolution. Then we have

c �x(n) M y(n)� = �xi(n) M yi(n)�i=1�XXX �M � (7.3)

A remark is in order regarding the implementa-

tion of the decimated, discrete time-wavelet trans-

form. Normally, in order to ensure that the number

of output points equals the number of input points,

the convolutions performed on the data set are cir-

cular. In other words, the signal vector is treated as

if it were periodic with period N, the length of the

data set. If N is a power of 2, then the convolutions

can be performed efficiently with FFTs. We adopt

this convention as well, applying it to the overcom-

plete discrete-time wavelet transform such that each

xi(n) 
 i = 1
 � � � 
 M is an N-point sequence. More-

over, we will not distinguish between circular and

non-circular convolution unless there is a reason to

do so (i. e., a relationship holds for one but not the

other).

One additional property is required before we can

obtain a wavelet-based expression for a matched fil-

ter. We need to be able to express the dot product

between two vectors in the wavelet domain. For an

overcomplete, dyadic wavelet expansion, the follow-

ing relationship holds:

x(n) �y(n) =

M,
i=1

2−min(i�M−1) xi(n) �yi(n)
 (7.4)

where x(n) and y(n) are time series. The restriction of

the power of 2 in equation 7.4 is necessary because
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Figure 7.3: Block diagram of a filterbank implementation of a critically-sampled, discrete-time wavelet

expansion of a time series. Panel a shows the analysis section which partitions a time series into different

channels with complementary passbands. Panel b illustrates the synthesis section which reconstructs the

original time series from the set of channels.
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Figure 7.4: Frequency response of the filters in a filterbank implementation of a discrete time-wavelet

expansion of a time series using Debauchies’ 12-tap filter. Panel a shows the frequency responses on a

linear frequency scale. Panel b has a logarithmic frequency scale, illustrating the “constant-Q” property of

an octave-band wavelet analysis.
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the last two channels of the OWT have the same

bandwidth. Equation 7.4 can be established from

Parseval’s relation for tight frames (108). This re-

sult, in turn, should agree with our intuition, as each

time we iterate the dyadic filterbank of Figure 7.3,

we double the number of samples representing the

lowpass channel output from the previous iteration.

We are now in the position to recast equation 6.11

in terms of the overcomplete wavelet expansion. The

whitening filter is implemented by simply scaling

each channel of the filter bank by a time-varying

value inversely proportional to the local standard de-

viation of the data in that channel. The bandwidth

in the channel helps determine the time frame over

which the standard deviation is estimated. If the win-

dow is K points long for the smallest scale, then it

should be 2i−1K for the i th channel. The window

should also be much longer than the transit duration

of interest so that it will not itself be perturbed by

a transit, thereby reducing the detectability of tran-

sits. On the other hand, the window should be kept

short enough to track changes in the statistics of the

underlying observational noise. Empirically we find

that a window length 10 times the duration of a tran-

sit works well. The detection statistic, then, is com-

puted by multiplying the whitened wavelet coeffi-

cients of the data by the whitened wavelet coeffi-

cients of the transit pulse, and then applying equa-

tion 7.4:

T =
�x � �s3�s � �s

= %M
i=1 2−min(i�M−1) %N

n=1[xi(n).  � i(n)] [si(n).  � i(n)]&%M
i=1 2−min(i�M−1) %N

n=1 s2
i (n).  �2

i (n)

�
(7.5)

The time-varying channel variance estimates, �2
i ,

are given by �2
i (n) =

1

2iK + 1

n+2i−1K,
k=n−2i−1K

x2
i (k) 
 i = 1 
 � � � 
 M 
 (7.6)

where each component xi(n) is periodically extended

in the usual fashion and 2K + 1 is the length of

the variance estimation window for the shortest time

scale.

The structure of the OWT is exceptionally con-

venient as it permits the efficient calculation of T

for a transit pulse at any location. Note that equa-

tion 7.6 implies that the whitening coefficients are

determined solely by x(n), regardless of the assumed

location of a transit signal. Thus, to compute T for

a given transit pulse centered at all possible time

steps, we simply “doubly whiten”

c �x(n)� (i. e., di-

vide it point-wise by
 �2

i (n)), correlate the results with

c �s(n)�, and apply the dot product relation, per-

forming the analogous operations for the denomina-

tor, noting that
 �−2

i (n) is itself a time series:

T (n) = d (n)3e (n)

= %M
i=1 2−min(i�M−1) [xi(n).  �2

i (n)] M si(−n)&%M
i=1 2−min(i�M−1)

 �−2
i (n) M s2

i (−n)

�
(7.7)

Note that the ‘−’ in si(−n) indicates time reversal.

The terms d (n) and e (n) are introduced for conve-

nience later on.

Recall at this point the form of Kay’s adaptive de-

tector (equation 6.11), and the partitioning of power

in each channel by the filterbank implementation of

the OWT (Figure 7.4). Rather than estimating the

power spectrum of the noise with a uniform mov-

ing average, equations 7.5 and 7.7 estimate P(K ) by

partitioning the frequency domain into non-uniform

intervals that increase in width logarithmically from

the baseband. They then average the power in each

channel over a time interval proportional to the in-

verse of the width of the channel. Clearly, an anal-

ogous operation could be carried out using peri-

odograms rather than a wavelet transform. The ef-

ficiency of the structure of the OWT, however, pro-

vides a compelling reason not to do so. More-

over, the OWT allows one to estimate the channel

variances with windows of differing lengths, an op-

tion not available with periodograms. Equation 7.7

forms the basis for the adaptive matched filter ap-

plied throughout the remainder of this paper. For

the purposes of examining the detectability of tran-

sits against solar-like variability, however, we need

only compute the expected detection statistic + T
�
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or the S/N via�T (n)	 = fggh M,
i=1

2−min(i�M−1)
 �−2

i (n) M s2
i (−n) 
 (7.8)

which holds so long as the analysis windows used to

estimate
 �−2

i (n) are sufficiently long. This can be ver-

ified by examining the change in the detection statis-

tics when 6x2
i (n)7 is calculated with and without the

presence of transits.

Figure 7.5 shows a flowchart for the construction

of the single event statistics using the wavelet-based

matched filter.

Finally, we note how to combine the components

of individual detection statistics to form multiple

event statistics. Suppose we wish to test for transits

at widely spaced locations A i �1
 � � � 
N �. The total

detection statistic is given by:

TA =
,
ijA

d (i). ,
ijA

e (i) 
 (7.9)

where d and e are as in equation 7.7. Hence, TA

can be determined from the components of the sin-

gle transit statistics at each individual transit loca-

tion. The next section presents the results of our

analysis of the DIARAD data set using this analysis

technique.

7.3 Performance Prediction Results

In this section we present the results of using the DI-

ARAD/SOHO data to predict the expected perfor-

mance of Kepler, a recently selected Discovery Mis-

sion designed to detect Earth-size planets orbiting

solar-like stars in the circumstellar habitable zone.

Kepler will observe
�

100 
000 target stars in the

Cygnus constellation continuously for at least four

years at a sampling rate of 4 hr−1 (11). For detect-

ing Earth-size planets, the spectral types of the target

stars span F7 through K4. The range of planetary

periods of greatest interest is from a few months to

2 years, with a corresponding range of central transit

durations from � 5 hr to 16 hr. The average tran-

sit duration is 10.1 hr for a uniform distribution of

orbital periods over this range. (Note that since the

average chord length1 of a circle of unit diameter isC .4, the average duration of a transit is C .4 times

the duration of a central transit, which is 13 hours

at an orbital period of one year. The average cen-

tral transit duration over these periods happens to be�13 hours, too. Moreover, 50% of transits are longer

than 11.3 hours.) The total number of effective inde-

pendent tests to be performed in searching the light

curves of 100,000 stars for transiting planets with or-

bital periods in this range is Z 2 �1012 (62). Assum-

ing Gaussian statistics, a detection threshold of � 7�
is required to control the total number of expected

false alarms below 1 for the entire experiment. At

this threshold, if the mean S/N of a set of transits is� 8� , a detection rate of �84% will be achieved. As

the total S/N is proportional to the square root of the

number of transits, a single event S/N of 4� suffices

for each of a set of four transits (for a one year or-

bit). This is a conservative requirement. It can easily

be argued that the 50% detection rate achievable at a

single event S/N of 3 �5� would yield a statistically

significant sample of detections (or non-detections)

given 100,000 target stars in the survey.

Kepler’s aperture is 0.95 m allowing 5 �75 �109 e−

to be collected every 6.5 hr for a G2, mv = 12 dwarf

star for a shot noise of 13 ppm. The instrument noise

should be � 6 ppm over this same duration. This

value is based on extensive laboratory tests, numer-

ical studies and modeling of the Kepler spacecraft

and photometer (70; 64; 94). The values in Table 3

of Koch et al. (70) support this level of instrumen-

tal noise from a high-fidelity hardware simulation

of Kepler’s environment, while the numerical stud-

ies of Remund et al. (94) are based on a detailed in-

strumental model. This model includes terms such

as dark current, read noise, amplifier and electron-

ics noise sources, quantization noise, spacecraft jit-

1Here we must be clear about how “random” chords are

generated. For circular orbits, the sole parameter determining

whether a planet transits or not is orbital inclination, i. Assum-

ing that i is uniformly distributed implies that the distance of

chords from the center of the stellar disc for transiting planets,

a, is also uniformly distributed. The average chord length, kc,

of chords constructed in this manner for a unit-diameter disc, is

then l 1m2
0

2 n1S4 − a2 daS l 1m2
0

da or o S4, giving the ratio of kc
to the maximum chord length, 1, as o S4.
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Figure 7.5: Flowchart showing the construction of single event statistics for the wavelet-based, matched

filter presented in the text.

ter noise, noise from the shutterless readout, and the

effects of charge transfer efficiency. To simulate the

combined effects of the shot noise and instrumental

noise for Kepler, a WGN sequence was added to the

DIARAD time series with a standard deviation equal

to the square root of the combined shot and instru-

mental variance for an mv=12 star less the square of

the DIARAD instrumental uncertainty (0�1 W m−2 in

each 3 min DIARAD measurement). The DIARAD

instrumental variance is � 1.4 the combined shot

and instrumental variance for one of Kepler’s mv=12

stars. Prior to applying the techniques of Chapter 6,

it was necessary to extend the length of the time se-

ries to a power of two (from � 217X47 to 218 points).

The time series was ‘periodically’ extended by re-

flecting segments at the beginning and end of the

original time series across the imaginary gap from

the end to 218. Both reflected segments were tapered

and added together much in the same fashion as the

missing points were filled in as described in Jenkins

(60). In addition, to compensate for the smoothing

nature of the fill-in procedure, we computed the crit-

ically sampled WT of the extended time series and

examined the local variances of the wavelet coef-

ficients. The variances of the filled-in points were

adjusted to match the variances of the points at the

edges of the gaps, with a linear transition from one

value to the next. This procedure was applied to each

wavelet scale so long as the mean variance of the

filled-in points was significantly below that of the

original points. These procedures minimize edge ef-

fects attendant in performing a circular WT of a time

series containing data gaps. In an actual search, care

needs to be exercised near the edges of any data gaps.

Any candidates with transits near data gaps should be

scrutinized carefully to eliminate false positives due

to edge effects.

The Kepler Mission should not suffer from large

time gaps. Roll maneuvers are planned about ev-

ery 90 days to reorient the sunshade and the solar

panels as the Sun would otherwise appear to revolve

about the spacecraft every year. A twenty-four hour

period has been budgeted for thermal stability to be

achieved after each roll and for nominal science op-

erations to re-commence. We assume that transits

cannot be found within 12 hours prior to the roll

maneuver and for 12 hours after thermal stability is

achieved. The lost data amounts to �2% of the to-

tal, implying that about 2% of all transits occurring

during the mission will be missed. This represents
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an insignificant impact on the science return as the

detection of a planet does not depend on observing

a set of consecutive transits. Moreover, the missing

phase space can be filled in by extending the mission

by about 2% or one month beyond the nominal four

years.

The OWT of the extended synthetic time series

and that of a single transit were computed using De-

bauchies’ 12-tap discrete wavelet filter (29). Equa-

tion 7.8 was applied to transits of 6.5-hr duration and

13-hr duration with depths of 84 ppm (0�115 W m−2)

corresponding to an Earth-size transit of a solar-like

star. Note that we have not included limb-darkening

in the simulated transits: they are simply rectangu-

lar pulses. This is a conservative approach. Limb-

darkening increases the depth of non-grazing tran-

sits, providing higher total signal energy for tran-

sits with duration longer than 82% of a central tran-

sit (which holds for more than 57% of all transits).

Also, limb-darkening concentrates the energy of a

transit into a shorter time period. Both of these ef-

fects increase the S/N of a transit signal and increase

its detectability against solar-like variability, which

exhibits less power at shorter time scales. Through-

out this discussion we ignore S/N’s calculated for

filled-in points in the DIARAD data or from points

within a day of gaps at least as long as a day. Filled-

in points do influence the results of nearby non-

filled-in points since they are included in the cal-

culation of local variance estimates of other points

(see equation 7.6). Their influence is reduced by the

compensation scheme described earlier. Figure 7.6

shows the results as a function of time throughout

the 5.2-year DIARAD data record. Note that the S/N

of a 13-hr transit is significantly higher than that of

a 6.5-hr transit at the beginning of the data record

near solar minimum (� 5�7� vs. � 4�9� ), but that

it is nearly the same at the end of the record near

solar maximum (� 4�25� vs. � 4� ). This is a con-

sequence of the movement of noise power towards

shorter time scales as solar max is approached (see

figure 7.2). Another way to interpret the S/N’s plot-

ted in this figure is to examine the equivalent total

noise, or combined differential photometric preci-

sion (CDPP), in a time interval equal to the duration

of the transit. This is easily computed by dividing the
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Figure 7.6: Estimated S/N’s (in �) for 6.5-hr transits

and 13-hr transits of Earth-size planets orbiting Sun-

like stars over half a solar-like cycle. Values of S/N

greater than 4� indicate a detection rate exceeding

84% for four transits.

transit depth (84 ppm) by the S/N. Figure 7.7 shows

the result of this calculation for the 6.5-hr and 13-hr

transits. As the desired total noise for Kepler is to

have no more than 21 ppm for the total noise budget

at 6.5 hr (for an mv=12 star), it’s clear that this re-

quirement is met with significant margin over most

of the data record. Since transit photometry cam-

paigns search for sequences of transits, it is the mean

S/N that is of interest, not the S/N of any particular

transit. These calculations were extended to cover

transits of durations .25 hr to 20 hr. Figures 7.8 and

7.9 present contour maps of the S/N and equivalent

total noise over the course of the DIARAD observa-

tions with instrumental and shot noise expected for

Kepler. The S/N’s allow Kepler to detect Earth-size

planets exhibiting four transits longer than � 5 hr for

mv=12 stars.

We note that minimum detectable planet radius is

not particularly sensitive to the single event S/N as

this is proportional to the square of the planetary ra-

dius. To illustrate this, we extend the calculations

above to stars of magnitude other than mv = 12. The

uncertainty of the DIARAD time series is equiva-

lent to the combined shot and instrumental noise of

a mv = 10�4 star. To simulate data from stars brighter
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Figure 7.7: Equivalent total noise (in ppm) for 6.5-

and 13-hr transits of Earth-size planets orbiting Sun-

like stars over half a solar-like cycle. Kepler’s total

noise budget is set to no more than 21 ppm at a time

scale of 6.5 hr, including stellar variability (i. e., 4�
for an 84 ppm Earth-size transit). This requirement is

met with significant margin on average for the noise

environment expected for Kepler.
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Figure 7.8: Contour map of estimated S/N’s (in �)

for single transits of Earth-size planets orbiting Sun-

like stars with durations from 0.25 to 20 hours. Four

or more Earth-size transits longer than � 5 hr are de-

tectable �84% of the time.
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Figure 7.9: Contour map of the equivalent total noise

(in ppm) as a function of transit duration (or time

interval) for Earth-size transits with shot and instru-

mental noise appropriate for the Kepler Mission.

than this required “denoising” the DIARAD time se-

ries to remove the instrumental noise. To do this,

we multiplied each channel of the decimated WT of

the 15-min binned DIARAD time series by a scalar

equal to the square root of the ratio of the sample

variance less the DIARAD instrumental variance to

the sample variance, and then transformed the re-

sult back into the time domain. This operation is es-

sentially a Wiener filter implemented in the wavelet

domain. Noise sequences representing a combina-

tion of shot noise and Kepler instrumental noise were

then added to the “denoised” time series to simulate

data from stars of different magnitudes. The sam-

ple variances of the first few channels are actually

slightly less than the reported measurement uncer-

tainties. We believe that this is likely the result of the

measurement-replacement procedure we used. Al-

ternatively, it may be due in part to an overly conser-

vative estimate of the instrument sensitivity by the

DIARAD science team. In any case, the difference

between the reported variance and the actual sample

variance is small. At the point design for a mv = 12

star, the difference is relatively insignificant since the

shot noise for such a star is well above the reported

DIARAD measurement uncertainty. For the first sev-
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Figure 7.10: Contour map of the Earth-size, single

transit S/N (in �) as a function of stellar magnitude

and transit duration. The range of stellar magnitudes

corresponds to the range for Kepler’s target stars.

eral channels (short time scales), then, we simply set

the scalar to zero when the operation given above

yielded an imaginary number. This is in one respect

a conservative approach as it places more noise in

these channels than in the original time series for a

given magnitude star.

Figure 7.10 shows a contour map of the Earth size,

single transit S/N as a function of stellar magnitude

and transit duration. We obtain S/N’s as high as 11�
for mv = 9 stars while S/N’s as low as 1� are obtained

at mv = 14 for transits longer than 2.5 hr. Values for

the minimum detectable planetary radius at an 84%

detection rate for four and for six transits are given in

the contour maps of Figure 7.11. This figure demon-

strate that planets significantly smaller than Earth

can be found by Kepler. For example, at mv = 10 and

for four transits, planets with radii as small as 0.7

Rp are detectable (0.5 Earth areas). With six tran-

sits, planets with radii as small as 0.6 Rp (0.36 Earth

areas) are detectable. Additionally, for cases exhibit-

ing six transits, planets as small as 1�0 Rp can be

detected orbiting stars as dim as mv = 12�7. Keep in

mind that this is for a detection rate of 84%. Planets

smaller than these are still detectable at lower detec-

tion rates.

Finally, we use the DIARAD time series to esti-
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Figure 7.11: Contour map of the minimum de-

tectable planetary radius (Rp = 1) at the 84% detec-

tion rate as a function of stellar magnitude and transit

duration for planets exhibiting four transits (panel a)

and for six transits (panel b). At mv = 10 and for four

transits, planets with radii as small as 0.7 Rp are de-

tectable (0.5 Earth areas). With six transits, planets

with radii smaller than 0.6 Rp (0.36 Earth areas) are

detectable.
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mate the effect of stellar rotation period on the de-

tectability of terrestrial planets. Batalha, et al. (7) es-

timate that 65% of Kepler’s target stars (F7-K9) are

sufficiently old to have spun down to rotation periods� 20 days. The question is, how is the detectability

of transits affected by rotation periods experienced

by the majority of these target stars? Ground-based

observations show that solar-type stars rotating faster

than the Sun are more magnetically active, increas-

ing the photometric variability over a range of time

scales. These observations provide an indication of

the appropriate scaling relation to use on time scales�
1 day. Figure 7 of Radick et al. (93) indicates that

photometric variability, � phot , on time scales shorter

than a year is related to the chromospheric activity

level parameter, R*HK, by a power law with exponent

1.5. Other observations (84) suggest that R*HK is ap-

proximately inversely proportional to stellar rotation

period, Prot , so that � phot Z P−1X5
rot � (7.10)

What these ground-based studies do not provide,

however, is the relation between rotation period and

photometric variability on time scales shortward of

a few days. The DIARAD measurements repre-

sent a means by which the time scale-dependent re-

sponse of solar-like stars to increased magnetic ac-

tivity can be estimated. At solar maximum (with

high magnetic activity levels), variability at long

time scales increases significantly relative to solar

minimum, while it remains comparatively constant

at time scales of hours (see Figure 7.2). To generate

a synthetic time series for an arbitrary rotation pe-

riod, then, we first scale the variances of the OWT

of the filled-in DIARAD time series (binned to 15

min) according to equation 7.10 and the ratio of the

curves in Figure 7.2, so that the scaling ramps from

a factor of 1 at the shortest time scale up to the value

given by equation 7.10 by the 9th time scale (Z 2.66

days). Next, the inverse OWT is performed, and

the resulting time series is resampled by linear in-

terpolation onto the appropriate time grid. Finally,

Kepler’s combined shot and instrumental noise for

mv = 12 stars is added to the resampled time series.

This procedure represents our best estimate of how

stellar rotation period should affect the photomet-

ric variability of solar-like stars. We do not expect

this model to be accurate over a wide range of stellar

types. It probably is only indicative of the expected

effects over stellar types near the Sun (G1−G4). Ear-

lier type stars generally exhibit less spotting and con-

sequently, lower � phot , while later type stars exhibit

more spotting and higher � phot for a given Prot (see,

e. g., 82). Earlier type stars, however, are larger, re-

quiring a larger planet to achieve the same S/N for

a given photometric variability, while later type stars

are smaller, mitigating the increased variability for

a given size planet to some degree. This analysis

does not include the effects of flare events, which ex-

hibit transient signatures on time scales of minutes

(more frequently) to a few hours (more rarely), the

frequency of which increases significantly for rapid

rotators.

Keeping these limitations in mind, we investigated

rotation periods from as short as one tenth to as

long as twice that of the Sun, where we adopt a

mean projected solar rotation period, Pq , of 26.6

days. Figure 7.12 shows the power density as a func-

tion of time scale for mv=12, solar-like stars with

0�5Pq 0 Prot 0 2�0Pq , along with the energy density

of a 10-hr, Earth-size transit. As Prot decreases, more

transit energy is masked, decreasing the detectabil-

ity. On the other hand, as Prot increases, more transit

energy leaks through the background noise, aiding

in detection. Figure 7.13 shows the mean S/N de-

termined over rotation periods between 0 �1Pq and

2�0Pq and as a function of transit duration from 0.25

to 20 hours. The single transit S/N exceeds 4� for

transits longer than 7 hours and Prot r 21 days, giv-

ing a detection rate � 84% for four or more such

transits. (We note that applying the scaling relation

of equation 7.10 to all time scales uniformly results

in a value of 3�5� for similar duration transits and

rotation periods, yielding a 50% detection rate.) Fig-

ure 7.14 shows contour plots of the minimum de-

tectable planet radius at the 84% detection rate for

four transits (panel a) and for six transits (panel b) as

functions of transit duration and stellar rotation pe-

riod. Six 3-hr-long or longer transits are sufficient

to detect an Earth-size planet for Prot r 16 days. Ke-

pler stands a good chance of detecting planets at least
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Figure 7.12: Distribution of power as a function

of time scale from wavelet analyses of simulated

time series of solar-like stars rotating both faster and

slower than the Sun. The labeled solid lines are for

stars with rotation periods between 0 �5Pq and 2�0Pq
(Pq = 26 �6 days), while the dashed curve shows the

energy density of a 10-hr, Earth-size transit. As the

rotation period decreases, the power spectrum shifts

left towards shorter time scales, and upwards as well,

due to increased photometric variability, and hence,

‘swallows’ more transit energy. Earth-size transits

remain detectable for stars rotating as much as twice

as fast as the Sun, so long as a sufficient number of

transits (� 7) are observed.

as small as Earth orbiting stars with rotation periods

40% shorter than that of the Sun.

7.4 Assessing Statistical Confidence

in Transiting Planet Candidates

The interpretation of the S/N’s obtained in Jenkins

(60) in terms of detection probability depend on the

distribution of the null statistics. If the observation

noise is significantly non-Gaussian, equation (6.7)

may underestimate the false alarm rate for a given

threshold, and so, the detection rate may be lower

than that indicated by equation (6.8) once a reason-

able threshold is determined. In this section we char-

acterize the distribution of null statistics for simu-

lated Kepler data. We then assess its similarity to
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Figure 7.13: Contour map of the mean Earth-size,

single transit S/N (in � ) as a function of transit du-

ration and stellar rotation period for mv=12, G2 stars

in Kepler’s FOV. Mean S/N’s exceeding 4� indicate

a detection rate of at least 84% for four or more tran-

sits.

a Gaussian distribution in terms of the threshold re-

quired for a given false alarm rate. We note first that

even if the distribution of the individual null statistics

is significantly non-Gaussian, the distribution of the

null statistics for multiple transits may be approxi-

mately Gaussian. This is due to the tendency of lin-

ear combinations of random variables to approach

a Gaussian distribution (88). To address this ques-

tion, we apply a bootstrap approach similar to that

described in Jenkins, Caldwell, & Borucki (62). The

modified algorithm is described in the appendix.

One might wonder whether solar-like variability

produces transit-like features that might be confused

with actual transit events. It is a curious character-

istic of random processes that they can, indeed, pro-

duce any given feature if observed for a sufficient

length of time. The DIARAD data set is no excep-

tion. There are several transit-like features over the

5.2 yr data set. The S/N of these features is no more

than 5� , and only a handful exhibit detection statis-

tics larger than 4� . The number of such events is

somewhat higher than one would expect from Gaus-

sian noise. The average Earth-size transit yields a

detection statistic of � 8� against this noise. Thus,
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Figure 7.14: Contour maps of the minimum de-

tectable planetary radius (Rp = 1) at the 84% detec-

tion rate as a function of transit duration and stel-

lar rotation period for planets exhibiting four tran-

sits (panel a) and six transits (panel b). Instrument

and shot noise appropriate for mv=12, G2 stars in

Kepler’s FOV is included in the analysis. Tran-

siting Earth-size planets exhibiting six transits are

detectable around stars with rotation periods 40%

shorter than that of the Sun (Prot Z 16 days).

even though there are some transit-like features, they

are individually much less significant than an Earth-

sized transit event would be. The question to an-

swer is: how great is the likelihood that a number

of such features would occur with a purely periodic

separation, so that the total S/N exceeds the detection

threshold? To answer this question, we examine the

bootstrap distribution of the null statistics of searches

for sets of four 8-hr transits in the DIARAD data set.

Figure 7.15 shows the false alarm rate as a func-

tion of detection threshold for the bootstrap statistics

for the bare DIARAD data, along with those for sim-

ulated Kepler data for an mv=12 star, and for that ex-

pected for Gaussian noise. The range of false alarm

rates extends from 10−10 to 10−15. At the required

false alarm rate of 10−12 for Kepler, the curves in-

dicate thresholds of 7.04, 7.18, and 7�52� , respec-

tively, for Gaussian noise, for noise appropriate for

a mv=12 Kepler star, and for DIARAD data with no

instrumental or shot noise added. Thus, to reach a

false alarm rate appropriate for Kepler, we would

need to increase the detection threshold above that

for Gaussian noise by only 0 �14� for a mv=12 star,

and by � 0 �5� for very bright stars (mv 0 10 �4).

This reduces the detection rate to 80% at mv=12. At

mv 0 12, however, the detection rate is reduced by an

insignificant amount as the S/N for four Earth-sized

transits is � 16� at these stellar magnitudes, which

is much higher than the revised detection threshold

of 7�5� . Therefore, even though solar-like stars may

exhibit occasional transit-like features (as would any

random process), the frequency and strength of such

features does not significantly increase the detection

threshold that is required to limit the total number

of false alarms over the entire campaign to no more

than one. Thus, natural solar-like variations pose no

threat to the ability of transit photometry to detect

planets as small as Earth, assuming that a sufficient

number of transits is observed.
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Figure 7.15: Graph of the false alarm rate as a func-

tion of detection threshold for a search for four 8-

hr transits in the DIARAD data. The dotted line is

for Gaussian noise, the solid line is for the DIARAD

data plus shot and instrumental noise appropriate

for an mv=12 star, and the dashed curve is for the

DIARAD data with no additional noise. Although

the null statistics of the DIARAD data are signif-

icantly non-Gaussian, the combination of statistics

for searches for 4 or more transits results in a distri-

bution that is fairly well characterized as Gaussian.

When the additional shot and instrumental noise for

an m v= 12 star is included, the resulting distribution

is nearly Gaussian.

7.5 A Modified Bootstrap Algo-

rithm for Determining the Dis-

tribution of the Null Statistics

for a Transit Search

Here we outline the computational algorithm used to

explore the bootstrap statistics of a search for sev-

eral transits, given a time series representing ob-

servational noise. This is a necessary step in de-

termining an appropriate detection threshold for a

photometric transit campaign. The goal is to de-

termine what the distribution of the null statistics is

for multiple transits from a knowledge of null statis-

tics corresponding to single transit events. A di-

rect examination of the multiple event statistics for

a data set such as from DIARAD is numerically pro-

hibitive. Jenkins, Caldwell, & Borucki (62) provide

a Monte Carlo approach for examining such distri-

butions which can be computationally quite inten-

sive. The approach given here allows one to con-

centrate efficiently on the upper tail of the distribu-

tion, which is often of greatest interest. First, assume

that the single event statistics have been computed

and that they have been sorted in descending order.

Further assume that the numerator and denomina-

tor from equation (7.5) have been preserved, so that

multiple event statistics can be computed from the

components of the single event statistics. Now the

bootstrap statistics for a search for L transits consist

of forming the multiple transit statistics for all pos-

sible combinations of L events. For the DIARAD

data set, there are � 150
000 time steps, for a to-

tal of over 4 � 1020 possible combinations for four

transits. Clearly, forming the sample distribution for

such a large number of points is out of the question.

We can, however, sort the single event statistics and

sample the distribution of interest in a practical man-

ner, obtaining a histogram at any desired resolution.

Note that there is no natural a priori ordering for

multiple event statistics in terms of the component

single event statistics due to the manner in which

the former are formed from the latter. However, the

higher multiple event statistics will tend to be pro-

duced by combinations of high single events. Thus,

it is possible to examine the bootstrap distribution of

the multiple event statistics roughly from highest to

lowest over a given range of values. We give the ex-

ample for four transits, but the algorithm can be eas-

ily generalized to any number of transits. Begin with

a counter set at [1,1,1,1]. This indicates the combi-

nation of four transits each identical to the event with

the largest single event statistic. Here we assume a

lower threshold of 6� for the range of statistics of in-

terest and a given bin size (s 1). The multiple event

statistic corresponding to this combination of the or-

dered single event statistics is formed, and the his-

togram bin containing this statistic is incremented by

one (the number of ways to draw this combination of

statistics at random). The counter is incremented by

one to [1,1,1,2], the corresponding statistic is formed

and the corresponding histogram bin incremented by
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4, the number of permutations of this set of digits.

This procedure is continued until a statistic is en-

countered that is below the lower threshold (of 6�
for this example). At this point, the 2nd digit (from

the right) of the counter is incremented to 2, the 1st

is set to 2: [1,1,2,2], and the procedure is contin-

ued. At any point that a statistic is encountered be-

low 6� , the next higher digit from the one that was

previously incremented is itself incremented. This

criterion prevents the algorithm from needlessly con-

sidering multiple event statistics below the range of

interest (+ 6� here). Additionally, the monotonic-

ity of the counter digits is preserved with every in-

crement. In this way, assuming no lower threshold

for skipping combinations, all possible combinations

would be considered. At the termination of the al-

gorithm, the number of events in each bin are di-

vided by the total possible number of combinations

of events to form a histogram of the probability den-

sity distribution above 6� . Note that the resulting

histogram will not be accurate in the neighborhood

of the lower threshold, as many statistics that some-

what exceed this bound are not considered, due to

the lack of a natural a priori ordering for the multiple

event statistics. Hence, the lower threshold should be

set conservatively below the actual range of interest.

For the DIARAD data, reliable results are obtained

above � 6�25� . The false alarm rate as a function

of threshold is obtained by taking 1 less the cumu-

lative sum of the density histogram, and noting that

the threshold is the left edge of each histogram bin.

This procedure may still be too taxing in compu-

tational terms. For example, assume that the lower

threshold is 6� and that there are 146,000 single

events. Gaussian statistics imply that events greater

than this threshold occur with frequency 10 �10−10.

So we would expect the procedure above to termi-

nate after approximately 4�5 �1011 iterations. In this

case, the procedure can be sped up by sampling, ei-

ther deterministically or randomly. For deterministic

sampling, instead of incrementing the counter by 1,

it can be incremented by a fixed value greater than

1, say 100. Alternatively, the counter can be incre-

mented by a discrete positive random deviate with

a mean of 25, for example. Such deviates can be

obtained simply by taking the nearest integer larger

than the product of a uniform random deviate in the

interval [0,1] and twice the desired mean increment.

The resulting histogram must be multiplied by the

mean increment value to account for the missing val-

ues. For the examples discussed in §7.5, the counter

was randomly incremented with a mean increment of

25 and a histogram bin size of 0�1� .



Chapter 8

Detecting Close-In Extrasolar Giant Planets

by Reflected Light

This chapter draws heavily on Jenkins and Doyle

(2003) ‘Detecting Reflected Light from Close-In Ex-

trasolar Giant Planets with the Kepler Photometer’.

The nature of expected reflected light signatures

from CEGPs is described, and the problem of deter-

mining an optimal detection algorithm is described.

A practical generalized likelihood ratio test is dis-

cussed that searches for CEGP signatures in peri-

odograms of stellar light curves. The task of setting

an appropriate detection threshold is discussed. Pro-

totype MATLAB source code is given in Appendix

C for the detection algorithms and for setting the de-

tection threshold.

8.1 The Reflected Light Signature

The reflected light signature of an extrasolar planet

appears uncomplicated at first, much like the pro-

gression of the phases of the moon. As the planet

swings along its orbit towards opposition, more of

its star-lit face is revealed, increasing its brightness.

Once past opposition, the planet slowly veils her

lighted countenance, decreasing the amount of light

reflected toward an observer. As the fraction of the

visible lighted hemisphere varies, the total flux from

the planet-star system oscillates with a period equal

to the planetary orbital period. Seager et al. (102)

showed that the shape of the reflected light curve

is sensitive to the assumed composition and size of

the condensates in the atmosphere of a CEGP. While

this presents an opportunity to learn more about the

properties of an atmosphere once it is discovered, it

makes the process of discovery more complex: The

reflected light signatures are not as readily charac-

terized as those of planetary transits, so that an ideal

matched filter approach does not appear viable. The

signatures from CEGPs are small (+100 ppm) com-

pared to the illumination from their stars, requiring

many cycles of observation to permit their discovery.

This process is complicated by the presence of stellar

variability which imposes its own variations on the

mean flux from the star. Older, slowly rotating stars

represent the best targets. They are not as active as

their younger counterparts, which are prone to out-

bursts and rapid changes in flux as star spots appear,

evolve, and cross their faces. In spite of these dif-

ficulties, a periodogram-based approach permits the

characterization of the detectability of CEGPs from

their reflected light component.

Our study of this problem began in 1996 in sup-

port of the proposed Kepler Mission1 to the NASA

Discovery Program (12), (36). That study used mea-

surements of solar irradiance by the Active Cavity

Radiometer for Irradiance Monitoring (ACRIM) ra-

diometer aboard the Solar Maximum Mission (SMM)

(112), along with a model for the reflected light sig-

nature based on a Lambert sphere and the albedo

of Jupiter. Here we significantly extend and update

the previous preliminary study using measurements

by the Dual Irradiance Absolute Radiometer (DI-

ARAD), an active cavity radiometer aboard the Solar

1www.kepler.arc.nasa.gov

62
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Heliospheric Observatory (SOHO) (41) along with

models of light curves for 51 Peg b–like planets de-

veloped by Seager et al. (102). For completeness, we

include Lambert sphere models of two significantly

different geometric albedos, p=0.15 and p=2/3. The

SOHO data are relatively complete, extend over a

period of 5.2 years, are evenly sampled at 3 min-

utes, a rate comparable to that for Kepler’s photom-

etry (15 minutes), and have the lowest instrumental

noise of any comparable measurement of solar irra-

diance. Seager et al. (102) provide an excellent pa-

per describing reflected light curves of CEGPs in the

visible portion of the spectrum. However, they do

not consider the problem of detecting CEGP signa-

tures in realistic noise appropriate to high precision,

space-based photometers.

8.2 Detection Approach

The detection of reflected light signatures of non-

idealized model atmospheres such as those predicted

by Seager et al. (102) is more complicated than for

the signature of a Lambert sphere. The power spec-

trum of any periodic waveform consists of a se-

quence of evenly spaced impulses separated by the

inverse of the fundamental period. For a Lambert

sphere, over 96% of the power in the reflected light

component is contained in the fundamental (aside

from the average flux or DC component, which is

undetectable against the stellar background for non-

transiting CEGPs). Thus, detecting the reflected

light signature of a Lambert sphere can be achieved

by forming the periodogram of the data, removing

any broadband background noise, and looking for

anomalously high peaks. In contrast, the power

of the Fourier expansions of Seager et al.’s model

CEGP light curves at high orbital inclinations is dis-

tributed over many harmonics in addition to the fun-

damental due to their non-sinusoidal shapes (see Fig.

8.1 and 8.2). How does one best search for such a

signal? 2

2A key point in searching for arbitrary periodic signals, or

even pure sinusoids of unknown frequency is that no optimal

detector exists (68). The most prevalent approach is to use a

generalized likelihood ratio test which forms a statistic based on
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Figure 8.1: Power spectral density (PSD) estimates for

solar-like variability and signatures of three extrasolar gi-

ant planets. The figure displays Hanning-windowed pe-

riodograms for a combination of the first 4 years of the

DIARAD data set and three reflected light CEGP signa-

tures. The three planetary signatures are for 1.2 RJ planets

with atmospheres composed of 1.0 tm particles in a 4 day

orbit, a planet with 0.1 tm particles in a 2.9 day orbit, and

a 4.6 day, albedo p = 2u3, Lambert sphere. The planetary

signatures consist of impulse trains with their harmonic

components denoted by ‘a’s, ‘b’s and ‘c’s, respectively.

The noise fluctuations in PSD estimates are quite evident.

As in the case of a pure sinusoid, a Fourier-

based approach seems most appropriate, since the

Fourier transform of a periodic signal is strongly re-

lated to its Fourier series, which parsimoniously and

uniquely determines the waveform. Unlike the case

for ground-based data sets that are irregularly sam-

pled and contain large gaps, photometric time se-

ries obtained from space-based photometers like Ke-

pler in heliocentric orbits will be evenly sampled and

nearly complete. This removes much of the ambigu-

ity encountered in power spectral analysis of astro-

nomical data sets collected with highly irregular or

sparse sampling. Thus, power spectral analyses us-

ing Fast Fourier Transforms (FFTs) simplify the de-

sign of a detector. For the sake of this discussion, let

x(n) represent the light curve, where n � �0
 � � � 
N −

the maximum likelihood estimate of the parameters of the signal

in the data. Such a detector has no pretenses of optimality, but

has other positive attributes and often works well in practice.
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Figure 8.2: Three solar-like PSDs are displayed in the

figure, along with a combination of these same planetary

signatures and a 26.6 day period, solar-like star. The stel-

lar PSDs have been smoothed by a 21-point moving me-

dian filter (0.015 Day−1 wide) followed by a 195-point

moving average filter (0.14 Day−1 wide) to illustrate the

average background noise. This is the procedure used by

the proposed detector to estimate the background stellar

PSDs prior to whitening the observed periodograms. The

solid curve corresponds to the DIARAD data (Prot = 26 v6
days), while the dashed and dash-dotted curves are for

solar-like stars with rotation periods of 20 and 35 days, re-

spectively, demonstrating the dependence of stellar vari-

ability on stellar rotation period. Three harmonic com-

ponents of the planet with 0.1 tm particles (solid lines

topped with ‘a’s) are visible above the noise, while seven

components of the planet with 1.0 tm particles are vis-

ible (dashed lines topped with ‘b’s). Only two compo-

nents (dotted lines topped with ‘c’s) of the p = 2u3 Lam-

bert sphere are visible. Thus, it should be possible to

constrain the particle size distribution and composition of

a CEGP atmosphere by the number of detected Fourier

components. On this scale, the planetary signatures ap-

pear as vertical line segments, though they are actually

distributed over a few frequency bins.

1� is an N-point time series with a corresponding dis-

crete Fourier transform (DFT) X (k), K = 2C k.N is

angular frequency, and k � �0
 � � � 
N −1�). The phase

of the light curve is a nuisance parameter from the

viewpoint of detecting the planetary signature and

can be removed by taking the squared magnitude of

the DFT, PX (k) = wX (k) w2, which is called the peri-

odogram of the time series x(n). In the absence of

noise, if the length of the observations were a mul-

tiple of the orbital period, Tp, then the periodogram

would be zero everywhere except in frequency bins

with central frequencies corresponding to the inverse

of the orbital period, f0 = T −1
p , and its multiples. If

the length of the observations is not an integral multi-

ple of the orbital period, the power in each harmonic

is distributed among a few bins surrounding the true

harmonic frequencies, since the FFT treats each data

string as a periodic sequence, and the length of the

data is not consonant with the true orbital period.

The presence of wide-band measurement noise as-

sures that each point in the periodogram will have

non-zero power. Assuming that the expected relative

power levels at the fundamental and the harmonics

are unknown, one can construct a detection statistic

by adding the periodogram values together that oc-

cur at the frequencies expected for the trial period

Tp, and then threshold the summed power for each

trial period so that the summed measurement noise is

not likely to exceed the chosen threshold. The statis-

tic must be modified to ensure that it is consistent

since longer periods contain more harmonics than

shorter ones, and consequently, the statistical distri-

bution of the test statistics depends on the number

of assumed harmonics. This is equivalent to fitting a

weighted sum of harmonically related sinusoids di-

rectly to the data. Kay (68) describes just such a

generalized likelihood ratio test (GLRT) for detect-

ing arbitrary periodic signals in WGN assuming a

generalized Rayleigh fading model.3

The approach we consider is similar; however, we

assume the signals consist of no more than seven

Fourier components, and we relax the requirement

that the measurement noise be WGN. This is moti-

3In the Rayleigh fading model for a communications chan-

nel, a transmitted sinusoid experiences multipath propagation

so that the received signal’s amplitude and phase are distorted

randomly. A sinusoid of fixed frequency can be represented as

the weighted sum of a cosine and a sine of the same frequency,

with the relative amplitudes of each component determining the

phase. If both component amplitudes have a zero mean, Gaus-

sian distribution, then the phase is uniformly distributed and the

amplitude of the received signal has a Rayleigh distribution. The

generalized Rayleigh fading model consists of a set of such sig-

nals with harmonically related frequencies to model arbitrary

periodic signals.
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vated by the observation that the model light curves

developed by Seager et al. (102) are not completely

arbitrary and by the fact that the power spectrum of

solar-like variability is very red: most of the power

is concentrated at low frequencies. At low inclina-

tions, the reflected light curves are relatively smooth

and quasi-sinusoidal, exhibiting few harmonics in

the frequency domain. At high inclinations, espe-

cially for the :r=1.0 �m model, the presence of a

narrow peak at opposition requires the presence of

about seven harmonics in addition to the fundamen-

tal (above the background solar-like noise). Another

GLRT approach would be to construct matched fil-

ters based directly on the atmospheric models them-

selves, varying the trial orbital period, inclination,

mean particle size, etc. A whitening filter would

be designed and each synthetic light curve would be

“whitened” and then correlated with the “whitened”

data.4 We choose not to do so for the following rea-

son: These models reflect the best conjectures re-

garding the composition and structure of CEGP at-

mospheres at this time, with little or no direct mea-

surements of their properties. A matched filter ap-

proach based on these models could potentially suf-

fer from a loss in sensitivity should the actual plane-

tary atmospheres differ significantly from the current

assumptions. On the other hand, the general shape

and amplitude predicted by the models are likely to

be useful in gauging the efficiency of the proposed

detector.

Our detector consists of taking the periodogram

as an estimate of the power spectral density (PSD)

of the observations, estimating the broadband back-

ground power spectrum of the measurement noise,

‘whitening’ the PSD, and then forming detection

statistics from the whitened PSD. We first form a

Hanning-windowed periodogram of the N-point ob-

4For Gaussian observation noise and a deterministic signal

of interest, the optimal detector consists of a whitening filter

followed by a simple matched filter detector (68). The function

of the whitening filter is to flatten the power spectrum of the ob-

servation noise so that filtered data can be characterized as white

Gaussian noise. Analysis of the performance of the resulting de-

tector is straightforward. For the case of non-Gaussian noise, the

detector may not be optimal, but it is generally the optimal lin-

ear detector, assuming the distribution of the observation noise is

known, and in practice often achieves acceptable performance.

servations. For convenience, we assume the num-

ber of samples is a power of 2. For Kepler’s sam-

pling rate, fs = 4 hr−1, N = 217 points corresponds

to 3.74 years (or about 4 years). The broadband

background, consisting of stellar variability and in-

strumental noise, is estimated by first applying a

21-point moving median filter (which replaces each

point by the median of the 21 nearest points), fol-

lowed by applying a 195-point moving average filter

(or boxcar filter). The moving median filter tends to

reject outliers from its estimate of the average power

level, preserving signatures of coherent signals in the

whitened PSD. The length of 195 points for the mov-

ing average corresponds to the number of frequency

bins between harmonics of a 7 day period planet for

the assumed sampling rate and length of the obser-

vations. Both of these numbers are somewhat arbi-

trary: wider filters reject more noise but don’t track

the power spectrum as well as shorter filters do in

regions where the PSD is changing rapidly. This

background noise estimate is divided into the peri-

odogram point-wise, yielding a ‘whitened’ spectrum

as in Figures 8.3 and 8.4. The advantage of whiten-

ing the periodogram is that the statistical distribution

of each frequency bin is uniform for all frequencies

except near the Nyquist frequency and near DC (a

frequency of 0), simplifying the task of establishing

appropriate detection thresholds. The whitened peri-

odogram is adjusted to have an approximate mean of

1.0 by dividing it by a factor of 0.6931, the median of

a -2
2(2x) process. (This adjustment is necessitated by

the moving median filter.) Finally, the value 1 is sub-

tracted to yield a zero-mean spectrum. [The distribu-

tion of the periodogram of zero-mean, unit-variance

WGN is -2
2(2x) (see, e. g., 88).] Finally, the detec-

tion statistic for each trial period N. (K fs) is formed

by adding the bins with center frequencies iK fs.N,

i = 1
 � � � 
M together, where M 0 7, as in Figure 8.5.

The trial periods are constrained to be inverses of the

frequency bins between 1/2 and 1/7 days−1.

This procedure was applied to each of 450 model

reflected light curves spanning inclinations from 10 �
to 90 � , orbital periods from 2 to 7 days, plus stel-

lar variability for stars with Prot between 5 and 40

days and instrumental and shot noise corresponding

to apparent stellar brightnesses between R=9.0 and
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Figure 8.3: The process of applying the proposed de-

tector to photometric data is illustrated by the peri-

odogram of synthetic stellar variability for a solar-

like star with a solar rotation period of 26.6 days,

mR=12 and an orbiting 1.2 RJ planet with an orbital

period of 3 days.

R=15.0. The combinations of these parameters gen-

erated a total of 21,600 synthetic PSDs for which the

corresponding detection statistics were calculated.

The number of assumed Fourier components was

varied from M = 1 to M = 7. Some results of these

numerical trials are summarized in Figure 8.6, which

plots the maximum detectable orbital period, Pmax,

for M = 1 at a detection rate of 90% against I, for

Prot=20, 25 and 35 days, for Sun-like (G2V) stars

with apparent stellar magnitudes mR=9.5, 11.5 and

13.5. Detection thresholds and detection rates are

discussed in §8.3.

For :r = 0�1 �m clouds (Fig. 8.6a), planets are de-

tectable out to P = 4�75 days for Prot=35 days, out to

P = 3 �7 days for Prot = 25 days, and out to P = 3�1
days for Prot = 20 days. The curves are rounded as

they fall at lower inclinations, and planets with I as

low as 50� are detectable for all the curves, while

planets with I
�

20� are detectable only for stars with

Prot = 35 days. For clouds consisting of :r = 1�0 �m

particles (Fig. 8.6b), the curves of Pmax are more lin-

ear, extending to orbital periods as long as 6 days

for Prot = 35 days, as long as 4.8 days for Prot = 25
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Figure 8.4: The process of applying the proposed

detector to photometric data is illustrated by the

“whitened” periodogram. The components of the

signal due to the planet appear at multiples of 1/3

day−1. The fundamental is not the strongest compo-

nent in the whitened spectrum, as it would be for the

case of white observational noise.

days, and to
�

3 days at high inclinations for stars

brighter than mR=14. The detectability of both of

these models at high orbital inclinations would be

improved by searching for more than one Fourier

component, (i. e., choosing a higher value for M).

This is a consequence of the larger number of har-

monics in the reflected light signature. Although the

power is distributed among more components, as the

orbital period increases, the signal is less sensitive

to the low frequency noise power due to stellar vari-

ability, which easily masks the low frequency com-

ponents of the signal. The behavior of the maximum

detectable planetary radius for a Lambert sphere with

p = 0�15 (Fig. 8.6c) is very similar to Seager et al.’s:r = 0�1 �m model. A Lambert sphere with p = 2.3

outperforms all the other models, as expected due to

its significantly more powerful signal. Planets in or-

bits up to nearly 7 days can be detected for Sun-like

stars with rotation periods of 35 days. For Sun-like

stars with rotation periods of 25 and 20 days, plan-

ets are detectable with orbital periods up to 5.4 and

4.6 days, respectively. The Lambert sphere model

PSD’s contain only two Fourier components. Con-
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Figure 8.5: The co-added spectrum corresponding to

the time series in Fig. 8.3 and 8.4 is shown. The peri-

odogram has been co-added to itself so that the com-

ponents of a periodic signal appear in the same bin,

and thus, dramatically increase the chance of detec-

tion. Note the strong peak at 3 days, corresponding

to the period of the signal in the time series. This

may not always be the case as it depends on the

strength of the fundamental compared to the back-

ground stellar and instrumental noise. In any case,

the presence of many strong peaks at rational har-

monics of the actual fundamental provide additional

confidence that a periodic signal has been detected,

and their spacing dictates the fundamental period.

sequently, the detectability of such signatures is not

improved significantly by choosing M
�

1.

Now that we have specified the detector, we must

analyze its performance for the stellar population and

expected planetary population. We should also de-

termine the optimal number, Mopt, of Fourier com-

ponents to search for, if possible. The value of doing

so cannot be overstated: higher values of M require

higher detection thresholds to achieve a given false

alarm rate. If too large a value for M is chosen then

adding additional periodogram values for M
�

Mopt

simply adds noise to the detection statistic. This will

drive down the total number of expected detections.

On the other hand, if too small a value for M is cho-

sen, then the sensitivity of the detector to CEGP sig-

natures would suffer and here, too, the number of ex-
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Figure 8.6: The maximum detectable planetary pe-

riod at a detection rate of 90% vs. orbital inclina-

tion for various stellar brightnesses and rotation pe-

riods and 4 years of data are plotted for: a) Seager

et al.’s :r = 0 �1 �m particle model, b) Seager et al.’s:r = 1 �0 �m particle model, c) a Lambert sphere with

geometric albedo p = 0�15, and d) a Lambert sphere

with p = 2.3. The number of assumed Fourier com-

ponents, M, is set to one here. Stellar rotation pe-

riods of 20 days, 25 days and 35 days are denoted

by dashed lines, solid lines and dash-dotted lines,

respectively. Stellar magnitudes mR=9.5, 11.5 and

13.5 are denoted by ‘x’s, crosses, and open circles,

respectively. The first three models yield compara-

ble numbers of expected CEGP detections. Seager

et al.’s :r = 1�0 �m particle model is easier to detect at

longer periods at high orbital inclinations relative to

the :r = 0�1 �m particle model or the p = 0�15 Lam-

bert sphere model. This is due to the greater number

of Fourier components, which can compensate for

red noise from stellar variability that can mask lower

frequency harmonics.

pected detections would not be maximized. The first

step is to determine the appropriate threshold for the

desired false alarm rate as a function of M. This is

accomplished via Monte Carlo runs as presented in

§8.3. To determine the best value of M, we also need

a model for the population of target stars, which de-

fines the observation noise, and a model for the dis-

tribution of CEGPs. We use the Besançon galactic
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model to characterize the target star population. The

distribution of CEGPs with orbital period can be esti-

mated from the list of known CEGPs. Moreover, we

need a method for extrapolating solar-like variabil-

ity from that of the Sun to the other spectral types.

Two methods are considered. In the first, the stellar

variability is treated strictly as a function of stellar

rotation period, so that the detection statistics are ad-

justed for the varying stellar size. In the second, it

is assumed that the mitigating effects of decreasing

(increasing) the stellar area towards cooler (warmer)

late-type stars are exactly balanced by an increase

(decrease) in stellar variability. Hence, no adjust-

ment is made to the detection statistics as a function

of spectral type. Given this information, we can then

determine which value of M maximizes the number

of expected CEGP detections for a particular atmo-

spheric model.

We found that the optimal value of M depends

a great deal on the assumed stellar population, and

the distribution of CEGPs with orbital period. If

the rotation periods of Kepler’s target stars were

evenly distributed, then optimal values for M var-

ied from M = 1 to 5, depending on the atmospheric

model and method for extrapolating stellar variabil-

ity across spectral type. Adopting a realistic dis-

tribution of stellar rotation period and spectral type

produced a surprising result. We found that M = 1

yielded the highest number of detections assuming

all four of the atmospheric models considered were

equally likely. The number of detections for each

atmospheric model as a function of M, and the aver-

age number of detections across all four atmospheric

models are given in Table 8.1. The results of both

methods for extrapolating stellar variability across

spectral type are averaged together for this exercise.

The effects of setting M to 1 were not strong for Sea-

ger et al.’s :r=1.0 �m model where Mopt exceeded 1.

In this case, M = 2 or 3 was optimal, depending on

how stellar variability was extrapolated. Up to 6%

fewer CEGPs would be detected using M = 1 rather

than M = 3 (174 vs. 185 total detections). For Sea-

ger et al.’s :r =0.1 �m model and both Lambert sphere

models, M = 1 was optimal, although the average

number of detections drops slowly with M.

8.3 Monte Carlo Analysis

In order to determine the detection thresholds and the

corresponding detection rates, we performed Monte

Carlo experiments on WGN sequences. Much of

this discussion draws on that of Jenkins, Caldwell,

& Borucki (62), which concerns the analogous prob-

lem of establishing thresholds for transit searches.

Each random time series was subjected to the same

whitening, and spectral co-adding as described in

§8.2. Two statistical distributions produced by these

Monte Carlo trials are of interest: that of the null

statistics for a single trial period, and that of the max-

imum null statistic observed for a search over all the

trial periods. The former defines in part the proba-

bility of detection for a given planetary signature and

background noise environment, since the distribution

of the detection statistic in the presence of a planet

can be approximated by shifting the null distribution

by the mean detection statistic. The latter dictates

the threshold necessary to control the total number

of false alarms for a search over a given number of

stars.

Let l1�0(M) denote the random process associated

with the null statistics for a single trial period, and

assumed number of Fourier components, M. Like-

wise, let lmax �0(M) denote the random process corre-

sponding to the null statistics for a search of a single

light curve over all trial periods. The corresponding

cumulative distribution functions are Pl1x0(x
M) and

Plmaxx0(x
M), respectively.5 For NL stars, the thresh-

olds, 2(M), that yield a false alarm rate of 1.NL for

each search are those values of x for which

Qlmaxx0(x
M) = 1 − Plmaxx0(x 
M) = 1 − 1.NL (8.1)

and hence, deliver a total expected number of false

alarms of exactly one for a search of NL light curves.

For a given threshold, 2 , and mean detection statistic,:l1(M), corresponding to a given planetary signature

the detection rate, PD(M), is given by

5In this discussion, the cumulative distribution function of a

random variable y is defined as the probability that a sample will

not exceed the value x: Py(x) = P(y Q x). The complementary

distribution function, 1 − Py(x) will be denoted as Qy(x).
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Table 8.1: Number of Expected Detections vs. Assumed Number of Fourier Components

Atmospheric Model

M :r = 1�0a :r = 0 �1a p = 2.3b p = 0 �15b Average

1 173.7 168.7 738.0 158.9 309.8

2 184.7 155.3 736.6 146.9 305.9

3 183.8 140.4 719.7 130.8 293.7

4 175.0 126.7 706.6 117.6 281.5

5 165.8 116.1 693.6 107.7 270.8

6 159.1 108.6 683.2 101.0 263.0

7 152.9 102.5 675.6 96.0 256.8
aAtmospheric models from Seager et al. (102) with mean particle radii yr in microns.
bLambert sphere models with the given geometric albedos, p.

PD(M) = Pl1x0(:l1 − 2 
M) 
 (8.2)

where the explicit dependence of :l1 and 2 on M is

suppressed for clarity.

Figure 8.7a shows the sample distributions for

Ql1 x0(x 
M) resulting from 619 million Monte Carlo

trials for M = 1, 3, 5, and 7. This represents the single

test false alarm rate as a function of detection thresh-

old. Figure 8.7b shows Qlmaxx0(x 
M) resulting from

1.3 million Monte Carlo runs, for the same values of

M. This represents the single search false alarm rate

as a function of detection threshold for each value of

M. Error bars denoting the 95% confidence intervals

appear at selected points in both panels.

It is useful to model Pl1 x0 and Qlmaxx0 analytically.

If the whitening procedure were perfect, and assum-

ing that the observation noise were Gaussian (though

not necessarily white), l1�0 would be distributed as a-2
2M random variable with a corresponding distribu-

tion Qz2
2 M

(2x + 2M). Figures 8.7a and 8.7b show the

sample distributions for l1�0 resulting from 619 mil-

lion Monte Carlo runs. Higher values of M require

higher thresholds to achieve a given false alarm rate.

We fit analytic functions of the form

Ql1 x0(x
M) Z Qz2
2 M

(Ax + B) (8.3)

to the sample distributions Ql1 x0(x 
M), where param-

eters A and B allow for shifts and scalings of the un-

derlying analytical distributions. Two methods for

determining the fitted parameters are considered. In

the first, we fit the analytic expressions directly to

the sample distributions, including the uncertainties

in each histogram bin. The resulting fit is useful for

estimating the detection rate as a function of signal

strength above the threshold, but may not fit the tail

of the distribution well. In the second method, the

log of the analytic function is fitted to the log of the

sample distributions in order to emphasize the tail.

The fitted parameters are given in Table 8.2. Re-

gardless of whether the sample distribution or the

log sample distribution is fitted, the values for A are

within a few percent of 2 and the values of B are no

more than 14% different from 2M, indicating good

agreement with the theoretical expectations.

To determine the appropriate detection thresholds,

we need to examine the sample distributions Qlmax x0 .

These are likely to be well-modeled as the result of

taking the maximum of some number, NEIT, of inde-

pendent draws from scaled and shifted -2
2M distribu-

tions. Here, NEIT is the effective number of indepen-

dent tests conducted in searching for reflected light

signatures of unknown period in a single light curve.

We take the values for A and B obtained from the fits

to the log of Ql1x0(x 
M) and fit the log of the analytic

functions of the form

Qlmaxx0(x�M) Z 1 − P
NEITz2

2 M

(A 
x + B) (8.4)

to the log of the sample distributions Qlmaxx0(x 
M).



70 CHAPTER 8. DETECTING GIANT PLANETS BY REFLECTED LIGHT

−5 0 5 10 15 20 25 30
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Detection Threshold

S
in

g
le

 T
e
s
t 
F

a
ls

e
 A

la
rm

 R
a
te

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Detection Threshold

S
in

g
le

 S
e
a
rc

h
 F

a
ls

e
 A

la
rm

 R
a
te

Figure 8.7: The single test and search false alarm rates as functions of detection threshold for the proposed

detector. The number of assumed Fourier components, M=1, 3, 5 and 7, are denoted by circles, asterisks,

squares, and diamonds, respectively, for the sample distributions. For clarity, only every fifth point of

each sample distribution is plotted. The solid curves indicate the least-squares fits to the log of the sample

distributions, emphasizing the upper tail in the fit. Error bars for 95% confidence intervals are denoted by

vertical line segments crossed by horizontal line segments at various locations in each sample distribution.

The single test false alarm rates can be used to estimate the detection rates for a given CEGP signal (see Fig.

8.8), while the single search false alarm rates determine the detection threshold for a given number of target

stars and desired total number of false alarms. Determining the optimal value of M is important, given that

higher values of M require correspondingly higher detection thresholds, which drives down the number of

detections if the chosen value of M is too high.

Table 8.2: Analytical Fits to Monte Carlo Null Distributions

Fit to Single Test Fit To

Direct Fita Fit to Tailb Single Searchc

M A B A B NEIT Threshold

1 2.110 2.114 1.923 2.691 451.81 16.9

2 2.106 4.231 1.936 4.911 429.73 18.8

3 2.104 6.346 2.001 6.738 462.57 20.0

4 2.104 8.460 1.995 9.002 463.56 21.3

5 2.103 10.574 2.006 11.082 469.40 22.3

6 2.103 12.688 1.980 13.548 459.68 23.5

7 2.104 14.801 2.037 15.170 476.03 24.1
aThe fit is of the form Pl1 {0(x |M) } P~2

2 M
(Ax + B)

bThe fit is of the formPlmax{0 (x |M) } PNEIT~2
2 M

(Ax + B), where A and B are fits

to the tail of the single test distributions.
cThreshold for a false alarm rate of 1 in 105 searches of stellar light curves.



8.4. POTENTIAL SOURCES OF CONFUSION AND METHODS OF DISCRIMINATION 71

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Detection Statistic less Detection Threshold

D
e

te
c
ti
o

n
 R

a
te

Figure 8.8: The detection rate as a function of the

signal strength above the detection threshold (vari-

ous symbols) along with analytic expressions (vari-

ous curves) fitted to the empirical distributions. The

number of assumed Fourier components, M=1, 3, 5

and 7, are denoted by circles, asterisks, squares and

diamonds, respectively for the sample distributions.

The corresponding analytical fits are denoted by dot-

ted, dash-dotted, dashed and solid curves, respec-

tively. For clarity, only every 5th point is plotted for

the sample distributions. At the threshold, the detec-

tion rate attains �60%. This is due to the asymmetry

of the distribution of null statistics. On this scale,

the empirical distribution functions and the analytic

expressions appear identical.

The values for NEIT are given in Table 8.2 and fall

between 430 and 476. For the length of data consid-

ered, there are �490 frequency bins corresponding

to periods between 2 and 7 days. Thus the whitening

and spectral co-adding operations apparently intro-

duce some correlation among the resulting detection

statistics, somewhat reducing the total number of in-

dependent tests conducted per search.

In determining the expected number of CEGPs

whose reflected light signatures Kepler will likely

detect, we average the detection rates from §8.2 over

all inclinations and over the distribution of planetary

periods of known CEGPs. The former can be accom-

plished by noting that inclination for randomly ori-

ented orbits is distributed according to the sine func-

tion. Table 8.3 contains the average detection rates

for 1.2 RJ planets orbiting Sun-like stars as func-

tions of stellar rotation period and apparent magni-

tude for all four atmospheric models for a detec-

tor with M = 1. These results correspond to a false

alarm rate of 1 in 105 light curve searches. The de-

tection rate falls more rapidly with decreasing stellar

rotation period than it does with increasing apparent

stellar magnitude for the range of magnitudes and

rotation periods considered here. The atmospheric

models predicted by Seager et al. (102) are sensitive

to the planet-star separation and are not likely to be

accurate for planets well within 0.04 AU or planets

much beyond 0.05 AU. Most of the planets making

up our assumed planetary orbit distribution function

fall within or close to these limits. Thus, we do not

believe that departures from the simple scaling sug-

gested by Seager et al. (102) are important in esti-

mating the number of CEGPs that Kepler will detect.

The detection rate is zero for stars with rotation pe-

riods shorter than 20 days for all save the p = 2.3

Lambert sphere model which can detect planets or-

biting stars with Prot as short as 15 days.

8.4 Potential Sources of Confusion

and Methods of Discrimination

Detection algorithms detect all signals of sufficient

amplitude with features that are well matched to the

shape of the signal of interest.6 Thus, not all sig-

nals yielding detection statistics above the detection

threshold need be signatures of CEGPs. Indeed, sev-

eral potential sources of confusion exist that might

inject signals similar to reflected light signatures of

CEGPs. These include intrinsic photometric vari-

ability of target stars themselves, and dim back-

ground variable stars within the photometric aper-

tures of target stars. Such variations include those

produced by star spots, eclipsing or grazing eclips-

6An exception to this rule is provided by the incoherent

matched filter or “energy detector” that thresholds the variance

of a time series. This detector is not sensitive to the shape of

the input signal, and consequently, suffers inferior performance

relative to a matched filter when the shape of the target signal is

well defined (see, e. g., 68).
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Table 8.3: Average Detection Rate for 1.2 RJ planets Orbiting Sun-Like Stars,(%)

Apparent Stellar Magnitude

Prot (mR)

(Days) 9.5 10.5 11.5 12.5 13.5 14.5yr=1.0 tm Particles

5 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0

15 0.0 0.0 0.0 0.0 0.0 0.0

20 12.2 12.0 11.8 10.8 8.2 2.6

25 36.0 35.7 34.6 31.8 24.0 8.2

30 49.6 48.7 47.4 43.5 33.2 13.3

35 59.3 58.2 55.3 53.0 40.8 15.9

40 66.5 65.9 64.4 56.6 44.6 16.8yr=0.1 tm Particles

5 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0

15 0.0 0.0 0.0 0.0 0.0 0.0

20 10.8 10.6 10.3 9.9 5.1 0.0

25 36.5 36.3 35.7 34.0 25.8 5.0

30 53.5 53.2 51.6 48.3 39.2 9.5

35 62.9 62.1 60.4 58.2 46.9 10.0

40 72.0 71.5 68.8 64.4 51.1 10.2

Albedo p = 0 v15 Lambert Sphere

5 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0

15 0.0 0.0 0.0 0.0 0.0 0.0

20 6.8 6.7 6.3 4.9 1.0 0.0

25 38.6 38.4 37.5 34.0 25.4 1.2

30 56.6 56.4 55.9 52.7 42.4 4.6

35 67.3 67.1 65.6 61.2 50.0 5.6

40 75.6 75.4 74.4 70.1 54.7 5.9

Albedo p = 2u3 Lambert Sphere

5 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0

15 39.0 39.0 39.0 38.9 38.8 37.5

20 67.1 67.1 67.0 66.9 66.3 64.3

25 82.4 82.4 82.4 82.3 81.9 78.8

30 84.1 84.1 84.1 84.1 83.6 80.9

35 93.9 93.9 93.8 93.4 92.4 84.6

40 97.3 97.3 97.2 96.4 95.6 89.1
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ing binaries, or intrinsic stellar pulsations. Section

§8.4.1 describes each of these classes of variability

along with an assessment of the likelihood they pose

as sources of confusion. Section §9.2 presents a ro-

bust method for rejecting confusion from blended,

variable background stars in a target star’s photomet-

ric aperture.

8.4.1 Potential Sources of Confusion

Sources of stellar variability that might be mistaken

for reflected light signatures of CEGPs include stel-

lar pulsations, star spots, and photometric variability

induced by binarity. These phenomena can occur in

the target star or in a blended background star, but the

amplitudes of concern are different since the magni-

tude of the variations of a blended background star

will be diluted by the flux of the target star. In addi-

tion, non-reflected light signatures of CEGPs might

be present, confounding the isolation and detection

of the reflected light signature. In this section we

discuss these sources of photometric variability and

assess the likelihood that each poses as a source of

confusion.

CEGPs can induce periodic photometric varia-

tions other than that due to reflected light. Doppler

modulation of the host stellar spectrum via reflex

motion of the host star about the system barycenter

modulates the total flux observed in the photometer’s

bandpass. Loeb & Gaudi (79) estimate the ampli-

tude of this effect and conclude that Doppler-induced

photometric variations for Jupiter-mass planets orbit-

ing solar-type stars in periods less than 7 days are

about 20 times fainter than the reflected light signa-

ture of Jupiter-sized, p = 2.3 Lambert spheres. The

Doppler-induced photometric signal is 90� out of

phase with that of the reflected light component from

a CEGP. Hence, rather than making it more difficult

to detect a CEGP, the combination of the two signa-

tures makes it easier to detect one since the power

from orthogonal signals add constructively in the

frequency domain. Radial velocity measurements

should help distinguish between the two signatures

in the case of non-transiting CEGPs.

Stellar pulsations can cause strictly periodic pho-

tometric variations. Acoustic waves traveling in the

Sun resonate at specific frequencies with character-

istic periods on the order of 5 minutes and typical

amplitudes of �10 ppm. The coherence lifetime

for these so-called p-mode oscillations is approxi-

mately a month, beyond which the sinusoidal com-

ponents drift out of phase (34). Buoyancy waves

(also called gravity waves) should have much longer

periods of 0.28-2.8 hours along with correspond-

ingly longer coherence timescales. To date, no one

has observed the signatures of g-modes in the Sun.

The VIRGO experiment aboard SOHO has placed

upper limits of 0.5 ppm on the amplitudes of solar

g-modes (4), which is in line with theoretical pre-

dictions (3). It does not appear that pulsations of

solar-like stars could present major problems: the

coherence timescales are short and the amplitudes

are significantly smaller than those due to the re-

flected light component from CEGPs. Moreover, the

amplitudes preclude stellar pulsations of background

blended stars from being confused with signatures of

CEGPs due to dilution.

Long-lived star spots or groups of spots can pro-

duce quasi-sinusoidal photometric signatures. Some

individual starspot groups of F, G, and K dwarfs

have been known to last for months-to-years and

cover an appreciable fraction of the star’s surface

(20-40% in extreme cases, 28), with the starspot cy-

cles themselves lasting from a half to several decades

for nearby solar-type stars (5). Contributions to so-

lar variability at tens of minutes come from granula-

tion and are present in only a few tens of ppm, while

sunspots contribute a variation of about 0.2% over

days or weeks. Faculae can also contribute varia-

tions of about 0 �1% over tens of days and last longer

than individual sunspots, because differential rota-

tion distributes these over the whole solar disc (58).

It is difficult to imagine that star spots on solar-like

single stars could be easily confused with CEGPs.

On the Sun, for example, individual sunspots evolve

and change continuously on timescales comparable

to the mean solar rotation period (26.6 days). Thus,

the photometric signatures of sunspots vary from ro-

tation to rotation so that the photometric dips due

to spots do not repeat with a great degree of pre-

cision. In the Fourier domain it can be difficult to

identify the fundamental associated with the solar ro-
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tation period: the peak is extremely broad. Of more

concern, then, are photometric variations from dim

background late-type binaries, such as BY Dra or RS

CVn variables.

The BY Draconis variables are dKe and dMe stars

with typical differential amplitudes of 0.2 magni-

tudes and periods of a few days. For example, in pho-

tometric observations of CM Draconis (M4 + M4,

1.27 day period), Lacy (77) noted a �0.01 mag sinu-

soidal feature he attributed to a long-lived, high lat-

itude spot group that persisted for years. RS CVn

stars are generally eclipsing binaries consisting of

at least one subgiant component. These stars dis-

play nearly sinusoidal variations of up to 0.6 mag.

The photometric variations are due to an uneven dis-

tribution of cool spots in longitude that rotationally

modulate the apparent flux. Fortunately, one way of

distinguishing these variations from the phase vari-

ations of CEGPs is the fact that starspot activity of

these stars varies with phase over time. Kozhevnikov

& Kozhevnikova (76) found that the quasi-sinusoidal

starspot variation of CM Draconis had shifted by

60 degrees in phase over a two decade period and

had increased in amplitude (to �0.02 mag). The

eponymous BY Dra (M0 Ve + M0 Ve) has a mean

photometric period of 3.836 days, and can demon-

strate rather fickle photometric behavior: the nearly

sinusoidal variations discovered by Chugainov (24)

nearly disappeared by mid-1973. The light curves

for several BY Dra and RS CVn stars can be ex-

plained by the presence of two large spots on one of

the stellar components. As the spots evolve and mi-

grate in longitude, the photometric variations change

significantly (see, e. g., 101). Some RS CVn systems

with orbital rotation periods of several days exhibit

remarkable photometric variations over timescales

of months. The RS CVn binary V711 Tau (K0 V

+ B5 V), for example, has an orbital period of 2.84

days, and migration of spot groups in longitude leads

to changes in its “photometric wave” including the

exhibition of double peaks, nearly sinusoidal varia-

tions, and rather flat episodes (6). Starspot-induced

variations do not seem likely candidates for being

mistaken for reflected light signatures of CEGPs,

even for binary systems.

Ellipsoidal variables [e. g., o Persei (B1 III + B2

III), period = 4.42 days, differential amplitude 0.07

magnitudes in V] are non-eclipsing binaries that dis-

play photometric variations due to the changing rota-

tional aspect of their tidally elongated shapes (107).

These stars’ light curves exhibit two maxima and two

minima per orbital period, and one minimum can ac-

tually be significantly deeper than the other. Thus,

we do not expect that ellipsoidal variables will be

mistaken for CEGPs as the shape of the variations is

significantly different from that expected for CEGPs.

It is unlikely that photometric variations of binary

target stars will be confused with CEGPs. The Ke-

pler Mission will be preceded by ground-based ob-

servations to characterize all the stars in the FOV

with mR 0 16. These observations should be able to

detect almost all of the short period binaries. More-

over, ground-based, follow-up observations should

be able to detect any of these types of variable stars

in the cases where one might have been mistakenly

classified. These follow-up observations should help

discriminate between planetary and stellar sources

for any candidate signatures of CEGPs. Neverthe-

less, we should examine the frequency of such binary

systems in the photometric apertures of target stars,

and Kepler’s ability to distinguish between photo-

metric variability intrinsic to a target and that due to

blended background variables.

In a study of the light curves of 46,000 stars in

the cluster 47 Tuc, Albrow et al. (1) identified 71

likely BY Dra stars that exhibited photometric varia-

tions as high as 0.2 magnitudes. The fraction of stars

that are in binary systems is significantly lower in 47

Tuc (�14%) than it is in the galactic disc (�65%, as

per 38). The peak-to-peak amplitudes of the CEGP

reflected light curves considered here are between

20 and 60 ppm, so that background BY Dra bina-

ries would need to be �8 magnitudes dimmer than

a particular target star to exhibit photometric varia-

tions of the appropriate amplitude. We determined

the distribution of late-type (G, K and M) stars with

mR=17.0 to 23.0 corresponding to the range of ap-

parent magnitudes for Kepler target stars using the

Besançon galactic model. The number of binary sys-

tems with rotation periods between 2 and 7 days can

be estimated using the Gaussian model of Duquen-

noy & Mayor (38) for the distribution of binaries
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as a function of the log period. According to this

distribution, �1.75% of binaries in the galactic disc

should have periods in this range. Table 9.1 gives

the number of background binaries with periods in

this range consisting of at least one dwarf G, K or

M star in each aperture of a Kepler target star. The

apertures vary from 400 square arcsec for mR=9.5

stars, to 200 square arcsec for mR =14.5 stars, with a

corresponding number of background binaries vary-

ing from 13 to 69, respectively. Even if such a sys-

tem appears in the photometric aperture of a target

star, it is likely that it can be detected by observ-

ing the centroid of the brightness distribution over

time (Ron Gilliland 2001, personal communication),

as discussed in §9.2.



Chapter 9

Data Validation

This chapter discusses the process of validating

data. It includes a short section on establishing sta-

tistical confidence in detections. A second section

discusses problems of discriminating against back-

ground variable stars as the source of the planet-like

photometric signatures in a candidate light curve.

The effects of such a background star on the cen-

troid of a planetary target star are described and then

used to develop a means of detecting whether a back-

ground star is the source of the photometric varia-

tions. Limitations to the effectiveness of this tech-

nique are explored as as function of the apparent

magnitude of the targets star. Finally, the �2 fitting

of light curve data to estimate various transit param-

eters.

9.1 Establishing Statistical Confi-

dence in Detections

Consider any estimation problem in which parame-

ters get estimated (along with appropriate error esti-

mates on the parameters). A normal follow-up ques-

tion is ‘how sure can I be that there is not a much bet-

ter fit in some other corner of the parameter space?’

Given that merit functions often do not have a sin-

gle, global minimum, what process stopped this fit

from converging to a local minimum rather than the

global minimum? Such questions are generally very

difficult to answer.

If you happen to know the actual distribution law

of your measurement errors, then you can use Monte

Carlo simulations to create synthetic data sets. These

data sets can be subjected to the same fitting proce-

dure as the original data. This allows for a determi-

nation of the probability distribution of the -2 statis-

tic and the accuracy with which the model parame-

ters are reproduced by the fit.

This approach was used in §7.5 to explore the

bootstrap statistics of a search for several transits,

given a time series representing observational noise.

This was a necessary step in determining an appro-

priate detection threshold for a photometric transit

campaign. The goal was to determine what the dis-

tribution of the null statistics was for multiple transits

from a knowledge of null statistics corresponding to

single transit events.

This approach was also used in §8.3 to determine

the detection thresholds and the corresponding de-

tection rates for detection of extrasolar planets using

reflected light signatures.

In both instances the bootstrap approach seemed

to give good results. The reader is referred to these

sections for details.

9.2 A Method to Mitigate Confusion

from Blended Background Stars

for CEGPs

Since Kepler will return target star pixels rather than

stellar fluxes to the ground, it will be possible to con-

struct centroid time series for all the target stars. This

represents a robust and reliable means to discrimi-

nate between sources of variability intrinsic to a tar-

get star and those due to background variable stars

situated within the target stars’ photometric aper-

ture. Suppose that the background variable located
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at x2 is separated from the target star located at x1 by!x = x2 − x1, and that its brightness changes by �b2

from a mean brightness of :b2, while the target star’s

mean brightness is :b1. Then the change in the photo-

metric centroid position �xc with respect to the mean

position is given by�xc = �b2 !x.(1 + :b1.:b2) � (9.1)

Thus, a background star 8 magnitudes dimmer than

the target star separated by 1 arcsec and exhibiting a

change in brightness of 10% will cause the measured

centroid to change by 63 �as. The uncertainty in the

centroid, however, is determined largely by the Pois-

son statistics of the stellar flux signal and the ran-

dom noise in each pixel. For Kepler’s Point Spread

Function (PSF), the uncertainty of the centroid of an

mR=9.5 star measured over a 24 hr interval is �16�as (on a single axis). At a magnitude of mR=13.5,

the corresponding uncertainty is �118 �as. Note,

however, that we are not limited to the resolution of

a centroid over a short interval: Equation 9.1 implies

that the time series of the displacements of the tar-

get star’s centroid will be highly correlated with the

photometric variations if the latter are caused by a

variable background star offset sufficiently from the

target star. For detecting CEGPs by reflected light,

this fact implies that the centroid time series of a star

can be subjected to a periodogram-based test to de-

termine if there are statistically significant compo-

nents at the photometric period.

We performed numerical experiments with the

PSF for Kepler and the expected shot and instru-

mental noise to determine the radius to which back-

ground variables can be rejected at a confidence level

of 99.9% for four years of observation. The expected

accuracy of the centroids given above assumes that

errors in pointing can be removed perfectly by gen-

erating an astrometric grid solution for Kepler’s tar-

get stars. At some magnitude, systematic errors will

become significant. Here, we assume that the limit-

ing radius inside which we cannot reject false pos-

itives is 1/8 pixels, or 0.5 arcsec. Better isolation

of background binaries might be obtained in practice

for stars brighter than mR = 14�0. The relevant figures

for these calculations are given in Table 9.1, showing

that Kepler should be able to reject almost all such

false positives for mR +14.0. A significant number

(28) of false positives might occur for target stars

with 14�0 + mR + 15 �0. These would require further

follow-up observations to help discriminate between

background variables and signatures of CEGPs. We

note, however, that this assumes that the background

variables display periodic signatures that retain co-

herence over several years. As discussed in §8.4.1,

this is generally not the case.

9.3 The Effect of Dim Variable

Background Stars on Target

Star Centroids

An important problem for Kepler is the need to dis-

tinguish variable background stars from planets, as

the former can inject transit-like signatures into the

photometric apertures of target stars. For example,

if an edge-on eclipsing binary lies within 2 arcsec of

a target star and is �9.25 mags fainter than the tar-

get, the depth of the eclipse signal would be 1 �10−4

that of the total target star flux. This should not be

a major problem for transiting giant planets as the

SNR is large enough to allow for detailed studies of

the shape of the transit light curve to reject such con-

fusion. In the case of transiting terrestrial planets,

however, the SNR will most likely not allow for ad-

equate discrimination power, unless the planet is in

an extremely short period orbit. However, we have

access to more than the light curve to mitigate this

problem. So long as the variable background star

is offset sufficiently ion the sky from the target, the

centroid time history of the target star can reveal con-

fusion. Identifying confusion for transiting planets is

more challenging than that for reflected light candi-

dates, since the signal only exists during the transits.

To get a handle on this problem, let us assume the

following simple analytical model: Let the bright-

ness of the target star be B, the brightness of the

variable star be b, and let the stars be offset by !x.

Further, assume that the variable star’s brightness

changes by �b during the transit-like features. The

change in the centroid position during ‘transit’ from
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Table 9.1: Number of Background Binaries Not Excluded by Astrometry for Reflected Light Searches

Apparent Stellar Magnitude

(mR)

Parameter 9.5 10.5 11.5 12.5 13.5 14.5

Number of Background Binaries in Target Aperturesa 3 18 85 296 903 2405

Centroid Rejection Radius (arcsec)b +0.5 +0.5 +0.5 +0.5 +0.5 0.7

Aperture Size (square arcsec) 400 384 352 288 240 192

Number of Potential False Alarmsc 0 0 0 1 3 18
aThe background binaries of concern have periods between 2 and 7 days and are 8 magnitudes

fainter than the target stars.
bBackground variables can be rejected outside this radius with a confidence level of 99.9%.
cThese are the expected numbers of background variables that cannot be rejected simply by examining

Kepler data. Follow-up observations may be necessary to distinguish them from CEGPs if the

objects display coherent, periodic light curves over the 4 year duration of Kepler’s observations.

the baseline is given by�x =
b!x

B + b
−

(b − �b)!x

B + b − �b

 (9.2)

which simplifies to �x =
�b!x

B

 (9.3)

for B � b. Thus we can determine !x from �x by

dividing the latter by the fractional change in bright-

ness observed in the light curve.

For a star with a Gaussian profile it can be empiri-

cally established that the uncertainty in �x is given

approximately by the ratio of the Full Width Half

Max (FWHM) to twice the S/N of the stellar flux

signal (Dave Monet, personal communication):�2�
x Z FWHM

2 �B.&B + �2
bg� 
 (9.4)

where �2
bg is the variance of the background noise.

Applying the standard propagation of errors to

Eq. 9.3, we find the uncertainty in an estimate of the

actual offset of the background star to be�2��
x Z ��b

B �−2 ��2�
x + !x2 �2�

b
B � � (9.5)

The uncertainty in �b.B is simply the photometric

precision of the light curve on intervals equal to the

transit duration, so long as we assume that there is

no significant contribution from the baseline values

for either the target star flux or position.

Note that we do not need to estimate !x in order to

detect confusion: it is sufficient to obtain �x � �2�
x.

How large must !x be for this to be true? Since we

must estimate the centroid offset by combining the

offsets in both axes ��x2 + �y2, we are dealing with- process with 2 degrees of freedom. Choosing a

threshold of 3��x yields a 99% confidence that the

apparent centroid offset is due to a background star

and not to stochastic noise. The case of most inter-

est is that for �b.B Z 1 � 10−4, where B = 5 � 109,

corresponding to an mR = 12 G2 star for a 6.5-hour

interval. Adopting a fractional S/N of 20 ppm gives�2
bg = 5 � 109. The FWHM of Kepler photometer

is about 1.33 pixels or 5.29 mas so that ��x = 52 �9
mas. Thus, we can reject background eclipsing bina-

ries as the source for four transit-like features when!x
�

0�794 arcsec.

9.4 Development of Crowding Pa-

rameters

There is interest in developing metrics to describe

not only the number of stars in the neighborhood of a

target of interest, but also the relative magnitude and
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the distance from the target of interest. This gives

a feel for how much the light from the target star is

due to the flux from neighboring stars. This metric is

called the Crowding Parameter.

As such, let the target star of interest be denoted

by i. The crowding parameter for target i is, Ci. It is

then computed by

Ci =
Fi%N
j=1 Fj

(9.6)

where Fi is sum of the total flux of star i in the its

aperture, Fj is the flux from star j that is seen in

the aperture for star i, and index j sums over the N

stars whose flux contributes to the total flux seen in

the aperture of the i th star. Note that in this section

the term aperture refers specifically to those pixels

used to compute the target star’s flux time series, not

necessarily all surrounding pixels encompassing the

aperture that is transmitted from Kepler.

This crowding parameter, Ci, is, under this defini-

tion, a ratio of the amount of light in a given aperture

that is due to the target star as compared to the to-

tal light. It may be advantageous to represent this

number as a percentage, in which case the formula

in Equation 9.6 is multiplied by 100%.

At this point a decision may be required as to a

star’s fitness for inclusion in the Kepler catalogue

due to its crowding parameter. If the parameter is too

low, the star’s flux will be too easily confused with

that of nearby stars and therefore will be too noisy (in

some sense) for a reliable target search algorithm.

Obviously other parameters can easily be envi-

sioned combining the distance and magnitude of

nearby stars into a measure of some sort. There may

be utility in these measures. If so, they can be devel-

oped at that time.

Finally, it should be noted that the crowding

parameter is computable given an input catalog

and a representative PSF. All of this information

could be developed prior to launch to facilitate ini-

tial target selection. Standard software routines

in the IDL library exist (for example, DAOPHOT

- Type Photometry Procedures are available at

IDLastro �gs f c �nasa�gov.contents �html).

9.5 Assessing Physical Parameters

Upon successful identification of a transit event, a

whole host of follow on questions arise as to the

nature of the planet in question. What distance is

it from the target star? What size is it? Does it

have a period conducive to water existing in a liq-

uid state? The list goes on. Based upon the limited

data available from the light curve, some estimates

can be made on the following parameters:

1. Transit Depth,

2. Transit Duration,

3. Transit Period,

4. Transit Phase, and (from other sources)

5. Stellar Type,

6. Stellar Distance,

7. Stellar Radius,

8. Stellar Mass.

Identification of the parameters does not end with the

computation of the parameters themselves. It is im-

portant that this process is followed by estimating the

error in the computations. Finally, it is generally a

task to statistically measure the goodness of fit of the

parameters to the physical model to assess the confi-

dence in the match between the data and the model.

The actual mechanics of identifying and bound-

ing the parameters will done via a -2 fitting process.

Performing -2 fits in estimating errors in the fitted

parameters are standard science activities. Many nu-

merical analysis libraries return the standard errors

along with the fitted parameters. Specific implemen-

tation of these efforts are beyond the scope of this

document, but will be defined for the SOC at a fu-

ture time.

Finally, it is expected that all available information

associated with a target possessing a potential transit

will be displayed in some sort of published report

format that will be determined by the SOC.
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Part II summarizes the non-pipeline science processing of the Kepler data. It begins with Chapter 10

which discusses the management of the target lists and their associated parameters, focusing on the pho-

tometer coordinate system transformations, and concluding with a discussion of aperture selection. Chapters

11 provides an overview of the expectations for some of the SOC software that will be used upon receipt

of data from the DSN. Chapter 12 discusses the compression algorithms used to achieve lossless and rea-

sonable downlink rates, including entropic encoding. It also discusses the mission’s sensitivity to data loss.

Chapter 13 covers a potential method for on-board detection and correction of cosmic ray events. This

methodology will need to be adapted to ground-based cosmic ray detection and rejection. Finally, Chapter

14 describes the End-To-End-Model that has been developed to facilitate investigation of algorithms and

engineering decisions associated with the Kepler Mission.



Chapter 10

Target List Management

This chapter discusses the tasks associated with

managing the Target List. Such topics include moni-

toring CDPP, centroid motion, and updating the pho-

tometric aperture mask ID and target definitions for

command build at the MOC.

10.1 Photometer Coordinate Sys-

tem Discussion

In order to locate and identify celestial targets in the

Kepler data, it is necessary to specify the transforma-

tions between equatorial (right ascension, declina-

tion) and Kepler focal plane pixel coordinates (mod-

ule, output, CCD row, CCD column). An initial

transformation will be defined before launch to de-

termine what targets will be in the field of view in or-

der to generate an initial target list and to allow Guest

Observers to prepare proposals. After launch, the co-

ordinate conversion will be refined using the mea-

sured positions of known stars to solve for the trans-

formation coefficients. The two different cases will

be treated separately below. The coordinate system

used by the Kepler photometer and the layout of the

modules and CCD is described in section 10.2. Be-

cause of the quarterly 90� spacecraft rolls, there are

four orientations of the focal plane on the sky, thus an

integer number of 90� rotations about the photome-

ter axis is added to the transformation depending on

the season. The individual transformations used to

determine a target’s location on the focal plane are

described in section 10.3. The post-launch method

for refining the the coordinate transformation is de-

scribed in § 10.4.

10.2 Photometer Coordinate Sys-

tem

There are separate coordinate systems for the space-

craft and for the photometer. The orthogonal space-

craft coordinates are defined as

+X the photometer axis with positive (+) pointing

out of the photometer to the sky

+Y pointing out of the center of the solar array

+Z completing the right hand coordinate system.

The origin of the spacecraft coordinate system is near

the spacecraft–launch vehicle interface.

The focal plane coordinates are defined as

+X* coincides with spacecraft +X

+Y* is 13.0 degrees (+ rotation about +X) offset

from +Y

+Z* is 13.0 degrees (+ rotation about +X) offset

from +Z

The origin is near the surface of the center CCD.

A detailed description of the focal plane coordi-

nates is given in the systems engineering report Ke-

pler.SER.FPA.006. Figure 10.1 shows the layout of

the focal plane coordinates, modules, and CCD out-

puts. During operations there are four orientations

of the focal plane corresponding to the quarterly 90�
spacecraft rolls. With the exception of the central

module (number 13) the layout of the CCDs is 90�
rotationally symmetric.
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Figure 10.1: The layout of the Kepler focal plane

with the module numbers (2–24) and output num-

bers (1–4 on each module). The focal plane Y* and

Z* axes are indicated. Modules 1, 5, 21, and 25 corre-

spond to the fine guidance sensors at the four corners

of the focal plane.

There are two CCDs within each module. Each

CCD detector chip has two output amplifiers. The

outputs are numbered 1–4 on each module. The de-

tector chips have a serial register on the long edge of

the chip, with the amplifiers on the corners. The row

number increases along the short edge of the chip

from each amplifier. The column number increases

along the long edge of the chip from both amplifiers

towards the middle. The active imaging rows are

numbered 1-1024, columns from 1 to 1100. There-

fore, a location on the focal plane is uniquely speci-

fied by module number, output number, row, and col-

umn (e. g., module 13, output 2, row 256, column

625). Dark pixels and over clocked pixels (bias and

smear) are described in Chapter 3, Pixel Level Cali-

brations. Figure 10.2 illustrates the orientation of the

CCD rows and columns within a module.

Figure 10.2: The row (R) and column (C) orienta-

tion for CCDs within a module. Each CCD chip has

two readout amplifiers located at opposite ends of the

serial register along the long edge of the chip. The

rows and columns are numbered starting from 1 in

each corner.

10.3 Transformation from Equato-

rial Coordinates to Focal Plane

Pixels

Prior to launch, a transformation is needed that is

sufficiently accurate to determine what targets fall

within the Kepler field-of-view (FOV). The transfor-

mations described herein follow the method devel-

oped in Koch (73). The coordinate transforms, ex-

cluding optical and velocity aberrations, are coded in

Koch (74). The transformation can be done in a se-

ries of steps: 1) a rotation to transform from RA, Dec

to the center of the FOV, 2) a rotation to transform

from the center of the FOV to the center of the CCD,

3) a transformation to correct for optical distortions,

4) a transformation to correct for differential veloc-

ity aberration across the focal plane, and 5) a conver-

sion to module, CCD row, and column number, with

field flattener correction. Each of these steps will be

treated in detail below.

10.3.1 3–2–1 Transformation: Equatorial

to Center of FOV

The first step is to convert from right ascension and

declination (� 
 �) to the center of the FOV. The trans-

formation can be represented as a single rotation

around a specific or eigen axis, or a series of three

rotations in an orthogonal coordinate system. Fol-
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lowing the notation in Wertz, ‘Spacecraft Attitude

Determination and Control’ Appendix E, a 3-2-1

transformation is performed. That is, the spacecraft

XYZ coordinates are initially aligned with the celes-

tial sphere having the +X-axis at � = 0h, � = 0, +Z-

axis is at the north pole and +Y completes the right-

handed coordinate system (at � = 6h(90�), � = 0). 3-

2-1 refers to rotations about the spacecraft +Z, +Y

and then +X axes respectively.

The (current) selected FOV is at � = 19h35m50s� = 34�40*0**. So the 3-rotation is 293 �95833� , fol-

lowed by a 2-rotation of −34�66667� . Finally to

align the gaps with the bright stars a 1-rotation of

119.50000� is required. This last rotation is depen-

dent on the observing season and will vary by multi-

ples of 90� corresponding to the quarterly spacecraft

roll maneuvers. The Euler angle rotation matrix or

direction cosine matrix is given in Wertz (110) Table

E-1.

To transform from RA and Dec to focal plane ar-

ray (FPA) coordinates, the RA and Dec are converted

to direction cosines:

cos a = cos(�) M cos(�)

cosb = sin(�) M cos(�)

cos g = sin(�)

(10.1)

These are then multiplied by the direction cosine

matrix for the transformations, yielding the direc-

tion cosines in the transformed system cos a*, cosb*,
cos g*. Using the inverse of Equations 10.1 yields

what we will call the longitude and latitude in the

new (spherical) coordinate system with origin at the

center of the FPA.

10.3.2 Optical Transformation

The transformation due to the Kepler optics can be

broken into two parts: an axially symmetric trans-

formation due to the Schmidt corrector and the pri-

mary mirror, and a position shift within a module due

to the field flattener lens. The latter transform will

be discussed in section 10.3.5. Aberrations from a

Schmidt camera result in an axially symmetric redis-

tribution of the light from a star, causing the mea-

sured centroid of the star to shift relative to that from

an ideal imager. The change in position depends on

the details of the optical design, but will be radial;

that is, a star that would have appeared at some dis-

tance r0 from the center of the FOV will appear at

r0 + !r. The radial distance from the center of the

FOV to a given target and the angle measured from

the Y * axis are

r0 = 3Y *2 + Z *2 
 and

tan � = Z * .Y * 
 (10.2)

respectively. The radial distance change will be of

the form !r = ar�0 
 (10.3)

where a, and � are parameters that depend on the de-

tails of the Schmidt optics. The nominal plate scale

for Kepler is 3�**98/pixel or 0�**1474.�m.

10.3.3 Transform Center of the FOV to

CCD

The next step in the transformation is to determine

which CCD chip the target coordinate falls on. As

a first approximation, assuming that the modules are

on a 2.8600� grid is sufficient to locate the center of

the module on the sky. Once the distortions Schmidt

optics have been characterized, the angular position

of the center of each module relative to the center of

the FOV will be substituted for the above approxi-

mation. Having found the appropriate module for a

given target, a second 3–2–1 rotation from the cen-

ter of the FPA to the center of the module is per-

formed. The final rotation contains a term of 0� , 90� ,
180� , or 270� to align the CCD chip rows with lat-

itude and columns with longitude. The coefficients

for this transform depend on the module and are tab-

ulated in Koch (74). See Fig 10.2 for the orientation

of the rows and columns within a module.

10.3.4 Velocity Aberration

The finite velocity of light causes the position of a

star as seen from a moving observatory to differ from

that seen by an observatory at rest. The effect is

known as the aberration of light (not to be confused

with optical aberrations!). An object whose position

makes an angle � * to the moving observer’s velocity



10.3. TRANSFORMATION FROM EQUATORIAL COORDINATES TO FOCAL PLANE PIXELS 85

vector (see Fig. 10.3) will be seen at an angle � in the

rest frame given by

tan � =
sin � *�1 − � 2

cos � * + � (10.4)

where, � = V .c and c is the velocity of light (96).

The effect is largest at � * = 90� .

Figure 10.3: The coordinate systems used to define

the position change of an object observed from a

moving platform.

The apparent position shift (apparent - true) of a

star at right ascension and declination (� 
 �) seen by

an observatory moving with a barycentric velocity

with components parallel to equatorial rectangular

axes given by ( �X 
 �Y 
 �Z) is given to first order in V .c

by (55)

cos �!� = − �X
c

sin� + �Y
c

cos�!� = − �X
c

cos� sin � − �Y
c

sin� sin � + �Z
c

cos � (10.5)

The maximum shift in the apparent position of a

star as seen from the moving Earth is $20** due to

this effect. While the magnitude of the shift will be

similar for Kepler, it will be taken out by the guid-

ance system for the center of the FOV, assuming the

guidance system is designed to minimize the change

in position of stars on the four fine-guidance CCDs.

Therefore, it is only the differential shift between the

center of the FOV and an offset target that must be

taken into consideration. The differential shift will

vary throughout Kepler’s orbit as the angle between

the spacecraft velocity vector and the FOV varies.

The differential position shift at the corner of the

focal plane will be approximately $2**, or approxi-

mately one half of a pixel. The differential shift for a

target at (� 
 �) measured with respect to the center of

the field of view (�0 
 �0) can be found from Eq. 10.5

using

d� = !� − !�0

d� = !� − !�0 � (10.6)

These offsets can be calculated for the mid-point

time of a roll period in order to choose the target

apertures. The offsets are small enough so that target

apertures will not need to be updated between roll

maneuvers. The offset calculated from Eq. 10.6 can

be added to a target’s (� 
 �) to determine the precise

sub-pixel location at a given time using the steps in

section 10.3.5.

10.3.5 Pixel Identification

At this point the angles are small enough (+ 1�)
that the spherical latitude value is taken to be equal

to a linear conversion to a column (3.980000 arc-

sec/pixel). The spherical longitude value has a co-

sine(latitude) correction included, however this is

still very small (0�5** = 1.8 pixel) at the extreme cor-

ner. NOTE: DAC gets larger errors when using a lin-

ear conversion (� 3 pixels at the corners of a chip)

We need to confirm the above assertion.

Field Flattener Lens Corrections

The field flattener lenses on each module will cause

optical distortions that can shift the centroid of a tar-

get. It is expected that these distortions will be very

small and can be represented by a low order transfor-

mation in pixel offsets:

x* = a1 + a2x0 + a3y0 + ���
y* = a4 + a5x0 + a6y0 + ���
 (10.7)

where (x0 
y0) are the un-aberrated pixel positions.

The parameters of the transformation (ai) will be

characterized during test and commissioning.
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Alignment Offsets

During assembly of the focal plane, there is no shim-

ming or alignment process for the CCD detector chip

assemblies (DCAs) and modules. Thus each DCA

has some small amount of alignment offset in po-

sition and rotation from the nominal desired align-

ment. Once on-orbit the precise (to about 1.10th

pixel) relative orientation of each DCA will be mea-

sured based on known stellar catalog positions. The

coordinate transformation routine (74) has made ac-

commodations for incorporating these alignment off-

sets. DCA rotations will be taken into account when

transforming from the center of the FPA to the cen-

ter of each module, then a column and row offset

will be added. For each DCA, a 39 pixel row off-

set is already incorporated to account for the central

gap between the DCAs on each module. The uncer-

tainty due to tolerance buildup is expected to be on

the order of $5 pixels in row and column locations.

Once the as-built offsets have been incorporated,

a target’s pixel location on the output is recalculated,

since the exact location of the position relative to the

split in the middle of the chip is now known.

10.4 Post-Launch Coordinate

Transformation

After launch, we can measure the positions of known

stars over the Kepler focal plane, allowing us to re-

fine the focal plane to sky coordinate conversion.

The refinements will occur at the module level; that

is, the transformation to the center of the field of

view will still follow the method of section 10.3.1.

The center of each module on the sky (modulo 90�
for the quarterly rolls) will be determined from the

observed positions of known stars on the module,

and the transformation to the observed center of each

module will be as described in section 10.3.3. Within

a module the transformation will be treated in two

steps (48):

1. a projection from the spherical equatorial coor-

dinate system to a cartesian set of "standard co-

ordinates" (� 
2) aligned with north and east,

2. a transformation from standard coordinates to

pixel coordinates (x
y) taking into account rota-

tions, alignment offsets, optical distortions, etc.

The transformation to standard coordinates for a star

at (� 
 �) on a module centered at (�0 
 �0) is given by� =
sin(� − �0)

sin �0 tan � + cos �0 cos(� − �0)
(10.8)

and 2 =
tan � − tan �0 cos(� − �0)

tan �0 tan � + cos(� − �0)
� (10.9)

The equatorial coordinates should be corrected

for differential velocity aberration before applying

Eqs. 10.8 & 10.9. That is, the catalog positions

should be corrected to the apparent position at the

time of the observation. The transformation from

standard to pixel coordinates will be of the form� − x = c1 + c2x + c3y + c4x2 + c5y2 + c6xy + ���2 − y = d1 + d2x + d3y + d4x2 + d5y2 + d6xy + ����
(10.10)

The coefficients ci and di are solved for in a least-

squares sense using the known equatorial and pixel

positions of several stars per module. In practice

the solution is generally iterative in that the loca-

tion of the module center (�0 
 �0) and the choice of

reference stars can be adjusted to optimize the so-

lution. The iteration steps involve determining ci

and di from a set of reference stars, comparing the

measured and calculated positions of the reference

stars, adjusting (�0 
 �0), removing reference stars

with high-� position errors, and re-determining ci

and di. Once determined for a module, the coeffi-

cients should be stable barring thermally induced fo-

cus changes.

10.5 Aperture Selection for Data

Transmission

The selection of target star apertures for data trans-

mission is a key step in the data stream. The diffi-

culty in aperture selection comes from the compet-

ing goals of minimizing the quantity of transmitted

data while at the same time ensuring sufficient data

to meet the optimal pixel weighting as described in
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§4.2. Ideally only those pixels contained in the op-

timal set would be downloaded. However, this set

of pixels is likely to change over the duration of the

mission due to the variation in the absolute location

of the starfield with respect to the pixels on which

it is imaged (due to, for example, velocity aberra-

tion). This section describes a systematic approach

to determining an aperture that will guarantee trans-

mission of at a minimum the optimal pixels.

10.5.1 Aperture Selection Development

Methodology

The following steps describe the basic steps to find

the (almost) optimal set of pixel apertures.

1. Develop / obtain the PSF model that includes

blurring in the corners of the arrays. Include bloom-

ing effects for Mv 0 9 stars.

2. Develop / obtain a galactic model of the ex-

pected stars that will be seen in the Kepler field of

view (FOV).

3. Develop / obtain a model of the expected varia-

tions in the centroid of the PSFs as a result of space-

craft motion.

4. Simulate the PSFs/starfield/CCD output.

5. Obtain a list of the optimal pixels for each star.

6. Apply the variations expected.

7. Obtain a list of the additional optimal pixels

needed for each star.

8. Find a set of apertures that contains all of the

optimal pixels described in step 7.

The method of accomplishing step #8 above is

non-trivial and may require significant computa-

tional time. Exhaustive search methods may not

be achievable. However, other approaches leading

to sub-optimal results are possible. For example,

Genetic Algorithms (GAs) have been shown to be

relatively efficient at finding near-optimal results in

multi-dimensional space searches. The key to a suc-

cessful GA is to define the genes and the fitness func-

tion well in order to have the resulting solution be

valid. Discussions as to the specific methodologies

associated with GAs are beyond the scope of this

document, but are mentioned here as one of several

possible solutions to the aperture selection problem.

Possible fitness functions and values of interest in-

clude:

E = % i Pi (10.11)

E = % i Pi
� fi (10.12)

Etheoretical min = % i P
orig
i

� fi (10.13)

Epractical min = % i Pmotion
i

� fi (10.14)

where Pi is the number of pixels in aperture i, fi is

the (expected or actual) frequency of use for aper-

ture i, P
orig

i is the number of pixels in the origi-

nal optimal list, and Pmotion
i is the number of pixels

in the motion-included optimal list. The first equa-

tion would simply minimize the number of pixels in

all apertures. The second equation would minimize

the number of pixels transmitted to the ground for

a specified aperture set. The third equation would

express the optimal number of pixels transmitted

given no spacecraft jitter. The fourth equation would

express the theoretical minimum number of pixels

transmitted given worst-case spacecraft jitter.

On a side note, it may be necessary to have certain

relatively unique types of apertures defined. These

seem to fall broadly into three categories. First,

a long, column-wise aperture is needed to capture

data associated with saturated pixels (the so-called

blooming pixel data). Secondly, a generic, rectangu-

lar (square?) area to capture a relatively large por-

tion of the starfield may be required. This may be

useful in determining/estimating certain parameters

like smear pixels and other virtual pixels. Finally, a

generic perimeter region of space may be requested

for any number of reasons, not the least of which is

the opportunity for secondary observers.

Finally, there is a host of a priori information

about the downlink apertures that should signifi-

cantly assist in any efforts associated with them. For

example, the set of 1024 downlink apertures have the

following attributes:

1) Every aperture does not contain any "holes"

or "branches", that is it is a convex, closed shape

(as nearly as a sampled square grid can approximate

such an underlying continuous shape).

2) Each aperture is symmetric about some axis

(not necessarily the x or y axis) prior to quantiza-

tion/sampling effects.
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3) Each aperture has a corresponding aperture that

is its mirror image in both dimensions (note that this

means there are only 256 unique apertures because

each one has 3 other ‘mirrors’ associated with it).

4) Each aperture has a corresponding rotation of

90, 180, and 270 degrees. By a similar argument

as in #3 above, this means there are only 64 unique

apertures.

5) The overall size of the aperture (total number

of pixels) is dependent upon the total flux received

from the corresponding target star.

This information, combined with the various op-

portunities to simulate a set of downlink apertures,

should allow for the identification of a set of down-

link apertures that can be used to reduce the amount

of data that is transmitted from Kepler to the DSN

without loss of information. This data reduction is

more thoroughly addressed in Chapter 12 Manage-

ment of Compression Parameters.

10.5.2 Aperture Selection Simulated Vali-

dation

This section will be completed at a later time.



Chapter 11

Quick Look Software

This chapter contains an overview of what func-

tionality will continue in what was originally desig-

nated the ‘Quick Look’ software. Quick Look itself,

as it was originally conceived, will no longer be im-

plemented. Instead, its functionality will be moved

to the SOC Science Processing Pipeline and desig-

nated as ‘First Look’.

11.1 General Quick Look Overview

There are any number of attributes that can broadly

be applied to the various Quick Look routines. Prob-

ably the most important of them involves data being

obtained from the DSN/MOC every 4 days. Once

this data is received (and maybe it is incomplete,

containing missing packets) an automated analysis

should begin. This analysis will nominally take place

on the most recent data as well as data that is up to 30

days old as a comparison baseline. The analysis rou-

tines should be performed on a group of fiducial stars

of long cadences types which are designated prior

to the beginning of the mission. The results should

be compared to nominal parameter values and sub-

sequently written to logs as well as displayed in a

report. Such a report will be available on the web

for viewing. Prudent precautions for access and se-

curity are assumed to be in place. Additionally, rel-

ative importance of the processing results should be

assigned, allowing a follow-up engineer to quickly

assess the presence or absence of a critical event or

situation associated with Kepler’s performance pa-

rameters.

Initially, the Quick Look program was intended to

run at the MOC. As a consequence there were a num-

ber of tables that were assumed to be provided to the

MOC by the SOC. These tables included:

1. Target Definition Table

2. Photometric Aperture Definition Table

3. Photometric Operation Parameter Table

4. Requantization Table

5. Cosmic Ray Huffman Encoding/Decoding Ta-

ble

6. Science Data Huffman Encoding/Decoding Ta-

ble

Even though the SOC will now perform this analy-

sis without the MOC, this same information needs

to be available to the analysis routines that will be

developed. For the purposes of this chapter, it is as-

sumed that these tables are present and in a readily-

accessible format and location.

11.2 Roll Maneuver Routines

The Quick Look-R software package will be de-

signed to run after each roll maneuver by the FS,

who will be responsible for writing and maintain-

ing the code. It will assist in analysis of the attitude

of the spacecraft. Because of the movement of the

starfield, post-roll target definitions will need to be

verified for correctness. Potentially, new target defi-

nitions may need to be generated. This information

will be based upon the attitude quaternion (both in-

tended and actual). The results of the analysis should

89
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be summarized in a report (written/saved to disk text

and published/graphed on the web).

Because of the uncertainty in target positioning af-

ter a roll maneuver, it will probably be necessary to

execute the Quick Look-R software on a full field

image (FFI).

11.3 Focal Plane Analysis

The Quick Look-F software is tasked with analyzing

the focus condition of the spacecraft. It also will be

written, run, and maintained by the FS. The focus

is pre-set before launch and is not expected to need

modification. However, unknown conditions provide

an impetus to at a minimum analyze it in the unlikely

event that Kepler needs to adjust the focus (is able to

re-focus).

The image quality is based largely upon the ability

of the optics to focus the image, in this case the 112

square degrees of stars in the constellation Cygnus.

One measure of this focus is called the Full Width

Half Maximum (FWHM) of the PSF. Measuring the

FWHM of a point source can be done in any number

of ways. Here we choose to fit the data to a waveform

that is representory of the PSF and find the width of

the curve at one-half of its peak value (hence the term

full width half max). This process is displayed in

Figure 11.1. It is expected that detailed textual and

graphical reports about the focus will be generated

for each fiducial target, each module, and the Kepler

FOV as a whole.

11.4 General Data Analysis

The vast majority of the processing functionality that

was Quick Look has survived in the Quick Look-D

program. Quick Look-D monitors fiducial targets for

unexpected or significant changes in the following

metrics:

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pixel

F
lu

x

Sampled Data

Curve Fit

Figure 11.1: A one dimensional representation of the

star flux data, the curve-fitted function, and the sub-

sequent measurement of FWHM. Here the solid line

is the curve that is a Gaussian with a peak of 1.0,

a mean of 0.0, and a standard deviation of 1.0 is the

‘best fit’ for the underlying sampled data represented

by a dotted line. The FWHM of the curve is mea-

sured as 2.0 (the horizontal line).
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Table 11.1: Metrics for Quick Look-D.

Parameter Name Possible Metric(s)

Brightness Absolute or Relative Change in Target Flux Value

Centroid Absolute Location, Relative Movement over Time

Encircled Energy Total Value, RMS Value, Drift Percentage

Background Pixels Total Flux, RMS Flux

Black Level Absolute Deviation in Black Level from 0

Smear RMS Change in Total Smear Value

Trends Significant Trends (Correlated or Uncorrelated to Ancillary Data)

Image Quality Absolute and Changes in PSF on Local and Global Scales

Plate Scale Stability of Plate Scale Parameters

Cosmic Ray Hits Number of Hits per Unit Time, Contribution to CDPP



Chapter 12

Management of Compression Parameters

The flight software uses a simple algorithm to

compress the pixel measurements and the cosmic ray

counts for each pixel. The baseline algorithm is to re-

move the first measurement of 96-sample block from

each pixel sample during that interval, and to Huff-

man code the residuals. A fixed Huffman code will

be used and the code table must be delivered by the

SOC to the MOC for upload. Similarly, the base-

line approach to compressing the cosmic ray counts

is to run length encode them and then Huffman code

the run-length encoded counts. A Huffman code

table for the purposes of coding the run-length en-

coded cosmic ray counts must also be provided by

the SOC. Over time, the statistical properties of the

pixel residuals or the cosmic ray counts may drift,

necessitating updates to the onboard Huffman cod-

ing tables. The SOC must track the performance of

the onboard compression algorithms and determine

updates to the Huffman tables.

The chapter is organized as follows. In §12.1

we discuss fundamental limits to the compressibil-

ity of data and describe general compression pro-

cesses. Autoregressive predictor filters are described

in §12.2, which are then applied to study the com-

pressibility of Kepler-like pixel time series in §12.3.

The task of entropy encoding a residual pixel time

series is described in §12.4, which focusses on Huff-

man codes. Finally, in §12.5 we consider the effects

of data loss on the ability to reconstruct pixel time

series from the coded bitstream.

12.1 Compression of Digitized Data

Seminal studies on the capacity of communication

channels were performed in the 1920’s by Nyquist

(85, 86) and Hartley (49). However, Shannon (105)

was the first to systematically study the capacity of

noisy communication channels and the compressibil-

ity of signals and is considered the father of infor-

mation theory. Shannon showed that there are fun-

damental limits to the compressibility of digitized

data, and that a statistical analysis of digitized data

is sufficient to determine the compressibility of such

data. The number of bits required to represent a time

series depends on the desired level of quantization

noise, the ability to predict the process sampled by

the time series, and the distribution of observation

noise. For this discussion, we’ll adopt the model for

a compression algorithm given in Figure 12.1. Here,�pn represents the raw co-added pixel values flowing

from the focal plane electronics. The raw time series

is first requantized, yielding the time series pn, from

which a predicted value,
 
pn, is subtracted, yielding

a residual, � pn, which is entropically encoded and

stored in the solid state recorder (SSR). If the requan-

tized pixel time series can be predicted well, then the

residuals should be near zero and have the same dis-

tribution as that of the observation noise. In the ab-

sence of observation noise (and quantization noise),

then the data stream could be compressed into a very

small package indeed, since no information need be

transmitted aside from the initial timesteps necessary

to initiate the perfect prediction process. In reality,

the process p(n) will not be perfectly predictable and

the distribution of �p(n) will depart somewhat from
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that of the observation noise.

Requantizer
Entropic
Encoder

Predictor

p̂(n)

p̃(n) p(n) d p(n)

D x(n)

D y(n)

SSR

-

+

Figure 12.1: A flowchart for the process of requan-

tizing, compressing and coding pixel time series on-

board Kepler. The raw, 15-min co-added pixel time

series �p(n) is requantized to control the quantization

noise to a fixed fraction of the measurement uncer-

tainty, yielding the time series p(n). A filter which

can take previous measurements into account as well

as ancillary data such as pointing offsets !x(n) and!y(n) provides a predicted value
 
p(n) which is sub-

tracted from p(n), yielding the residuals �p(n). These

residuals are entropically encoded and then stored in

discrete blocks in the solid state recorder (SSR).

The step of requantization is the only “lossy” one.

The remainder of the steps are constrained to yield

a coded bit stream from which the requantized pixel

values, p(n), can be perfectly reconstructed. Quan-

tization noise is unavoidable in applications like Ke-

pler, but its importance in terms of the total noise

budget can be controlled in various places in the sig-

nal processing chain. The initial injection of quanti-

zation noise occurs with the digitization of the CCD

pixel values from analog volts to digital counts by

the analog to digital converter (ADC). The baseline

design consists of 14-bit ADCs together with CCDs

with well capacities of 1,000,000 e−.1 This implies

that the minimum change in pixel brightness that can

be resolved in a single measurement by the system is

1An ongoing trade study is being conducted to investigate

methods for preserving the full range of the CCD wells while

improving the quantization noise at the dim end of the target

star range. One possibility is to use a dual slope amplifier to

increase the effective number of bits in the ADC. Another po-

tential scheme is to use a second ADC that maps the full well

depth of the CCD pixels following one which restricts its atten-

tion to the bottom portion of the well. In the event the first ADC

“maxes out”, the second ADC is called upon to digitize the pixel

voltage.

1 �106.(214 − 1), or �61 e− per digital count. Now

the quantization noise is the error between the ana-

log value entering the ADC and the resulting quan-

tized value when the latter is transformed back into

e−. The quantized value p(n) is obtained effectively

by rounding the analog value �p(n).61 to the near-

est integer. Hence, quantization noise, the difference�p(n) − 61 p(n) can be modeled as a uniform random

process with a minimum value of -30.5 e− and a max-

imum value of 30.5 e−. The variance of this process

is 612.12 (see, e. g., 88). Note that at the top of a

CCD pixel well, the root mean square (RMS) shot

noise is �1,000 e−, which is much larger than the

initial quantization noise of 17.6 e−. It makes no

sense to retain a resolution of 61 e− for nearly sat-

urated pixels with an inherent uncertainty of �1,000

e−. Therefore, the proposed algorithm first requan-

tizes the pixel time series so that the quantization

noise is a small, fixed fraction of the inherent un-

certainty in a pixel measurement.

To what value should we control the quantization

noise? This question can be answered in part by con-

sidering the increase in the total noise budget due to

quantization. Normalizing the measurement uncer-

tainty, �2
measured to one, we have�2

total = �2
measured + !2

Q.12 
 (12.1)

where �2
total is the combination of the measurement

uncertainty, �2
measured and the quantization transition

level, !Q, normalized to the measurement uncer-

tainty. We will assume that the time series under con-

sideration has an observation noise characterized as

a zero-mean, white Gaussian noise process. We note

that Shannon (105) showed that for a given variance

value, Gaussian noise has a higher entropy than any

other distribution, and hence, requires more bits to

code. In this sense, our assumption is conservative,

but it is likely to be a good approximation in practice.

The co-adding process will tend to produce time se-

ries that have Gaussian noise distributions, according

to the central limit theorem (88). Equation 12.1 al-

lows us to determine the impact of quantization noise

on the total noise budget for a given !Q.

A fundamental result due to Shannon (105) is that

the compressibility of a message or data set is deter-
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mined entirely by its entropy, H , defined as

H = −

N,
i=1

fi log2 fi 
 (12.2)

where � fi�i=1�XXX �N are the relative frequencies of each

symbol in a set of N symbols. For a zero-mean,�2-variance WGN process, the frequencies fi can be

evaluated as

fi = D i+1I2
i−1I2 _ !Q

2C e
−x2

�
2
QI2 dx

= erfL �9i + 1.2; !Q� − erfL �9i − 1.2; !Q� 

(12.3)

for i = � � � 
−2 
−1 
0 
1 
2 
 � � �, where

erfL(x) = D x

−E 132C e−y2 I2 dy
 (12.4)

is a modified version of the standard error function,

erf(x).

Figure 12.2 shows the entropy of a WGN process

as a function of the relative increase in the total noise

due to the quantization level, !Q. Accepting mod-

est amounts of quantization noise can significantly

reduce the entropy, and hence, the number of bits

required to represent a measurement. For example,

if the quantization noise is allowed to increase the

total noise budget by 10%, the entropy is only 1.5

bits. For a quantization level that inflates the total

noise budget by 1%, the entropy is still a modest 3.1

bits. Table 12.1 lists various quantities of interest

over a range of total noise budgets increases from

1% to 10%. The listed parameters include the total

noise (relative to the original measurement noise),

the quantization noise, the quantization level (rela-

tive to the measurement noise), and the entropy of

the quantized WGN. These entropy values represent

the best case values for a perfect predictor. Never-

theless, information theory provides the astonishing

fact that experimental data can be quantized to as lit-

tle as 1.5 bits per measurement for quantization noise

that increases the total noise budget by only 10%.

For Kepler this means that one day’s worth of data

for 200,000 stars might be compressed to as little

as 0.67 Gbit. (For the sake of the discussion, we’ll

use the following assumptions in estimating onboard

storage requirements: 200,000 target stars, 25 pix-

els per star, 96 measurements per day.) Thus, Kepler

could conceivably store up to 95 days’ worth of data

on its baseline 64 Gbit SSR.
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Figure 12.2: The entropy of a perfectly predictable

digitized process as a function of the combination

of observation noise and quantization noise. The

total noise is the RSS of the observation noise and

the quantization noise, normalized by the observa-

tion noise. An increase in the noise of the time series

of 1% requires at least 3.09 bits per measurement,

while an increase in the total noise by 10% requires

only �1.5 bits to code each measurement. Table 12.1

tabulates various parameters for a range of total noise

values from 1.01 to 1.1.

Requantization can be implemented simply by

constructing a table of reconstructed pixel values

with the jumps between neighboring values being

dictated by the shot noise and the desired quantiza-

tion noise. A lookup table would be used onboard

that maps each possible pixel value to the index cor-

responding to the closest ‘allowed’ pixel value in the

table of reconstructed pixel values. Assuming 312

exposures per 15 minutes, and setting the quantiza-

tion noise to one quarter the shot noise, there would

be a total of 40,722 possible reconstructed pixel val-

ues spanning counts from 0 e− to the maximum,

312 �106 e−. Thus, the initial step of requantization

achieves a modest degree of compression in itself by
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Table 12.1: Compression Parameters for Predictable Processes

Total Quantization Quantization Entropy

Noise Noise Level Bits

1.01 0.1418 0.4911 3.0874

1.02 0.2010 0.6963 2.5980

1.03 0.2468 0.8549 2.3160

1.04 0.2857 0.9895 2.1188

1.05 0.3202 1.1091 1.9682

1.06 0.3516 1.2179 1.8468

1.07 0.3807 1.3186 1.7456

1.08 0.4079 1.4131 1.6592

1.09 0.4337 1.5024 1.5838

1.10 0.4583 1.5874 1.5171

reducing the word size from 23 bits to avoid over-

flow to 15.3 bits to represent the requantized pixel

values. (If the exposure times were 4 seconds with a

0.5 second readout, then there would be 200 co-adds

per 15-min frame and 32,592 values in the lookup

table, reducing the word length to 15 bits to repre-

sent a requantized pixel value.) The following sec-

tion describes a realizable predictor for Kepler-like

pixel time series.

12.2 Predicting Pixel Time Series

In this section we discuss the problem of developing

a predictor filter for the purposes of compressing Ke-

pler pixel time series. As discussed previously, the

operating environment for Kepler should provide for

very little change in the telescope attitude over time

scales of days. The changes in pixel brightness due

to low frequency jitter should be small, but may be

significant in terms of achieving optimal data com-

pression. Intrinsic stellar variability is a concern, but

not for stars exhibiting solar-like variability, which

is quite small on timescales of interest for compres-

sion. To address these sources of variability we’ll

introduce the following model for the generation of

a pixel time series as a function of pointing offsets

in x and y denoted by !x and !y, respectively. Ad-

ditionally, we’ll assume that the stellar variability is

predictable in the sense that a current measurement

can be predicted from a linear combination of M pre-

vious time samples:

p(n) =

M,
i=1

ai p(n − i) + b!x(n) + c!y(n) + w(n) 

(12.5)

where ai, i = 1
 � � � 
M, b and c are real scalars de-

fined by the dependence of p(n) on its previous sam-

ples and the pointing offsets, and w(n) is the obser-

vation noise. Aside from the terms involving !x(n)

and !y(n) Equation 12.5 possesses the familiar form

of an auto regressive (AR) model for a stochastic

process (see, e. g., 50).2 This is a highly flexible

model for stochastic processes modeled as the re-

sult of passing noise through a linear filter. Such AR

models have been used extensively and successfully

in the analysis of a host of natural signals such as

human speech and seismological signals. The power

of this representation is that the AR model coeffi-

cients can be adjusted to match any arbitrary PSD, if

M is sufficiently high. Additionally, AR models can

2For the purposes of this discussion we’ll limit our attention

to zero-mean, wide sense stationary (WSS) processes. The pixel

time series under consideration can be modified to meet the first

condition by subtracting a suitable estimate of the average value.

They are also likely to be well-modeled as WSS over timescales

of days. A stochastic process is WSS if its mean and variance

are fixed quantities.
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match narrowband PSDs with relatively few coeffi-

cients, compared to other modeling approaches. The

AR approach seeks to determine the values of the

parameters ai 
i = 1 
 � � � 
M, b and c based on obser-

vations of p(n), !x(n) and !y(n). As an example,

consider the periodic signal of an eclipsing binary

with a photometric period of �2 days modeled as a

clipped sinusoid:

p(n) = 100 min �cos

9
2C .200n; 
0� + w(n)
 (12.6)

where w(n) is zero-mean, unit-variance, WGN. Were

it not for the clipping operation and measurement

noise, p(n) could be represented exactly with 2 AR

coefficients. Thus, in principle, such a sequence

could be compressed to just four values: the two AR

coefficients, and the first two data samples. The clip-

ping operation in Equation 12.6 implies that there

are significant harmonics above the fundamental fre-

quency of 0.48 day−1. However, the strength of

the harmonics drops rapidly so that good prediction

might be possible with only a few coefficients espe-

cially in the presence of measurement noise. Fitting

a 2-parameter AR model to Equation 12.6, we find

a1 = 1 �356 and a2 = −0�357. The values for the co-

efficients are a strong function of the level of the ob-

servation noise. Were w(n) absent, we would have

a1 = 1�979 and a2 = −0�98. Suppose we wish to

constrain the total noise to no more than 1.03 that

of the observation noise. The entropy of the origi-

nal sequence with observation noise and quantization

noise is 5.27 bits, while that of the prediction resid-

uals is 3.2 bits using 2 AR coefficients. Using more

AR coefficients can improve the compression. For

example, using 10 AR coefficients drops the entropy

of the residuals to 2.8 bits.

Consider the unclipped version of this signal, that

is, let p(n) = 100cos

9
2C .200n;. Then the entropy

of the original time series (quantized to a resolu-

tion of 312.4) is 7.5 bits, while that of the residual

with M = 2 is 3.4 bits, and for M = 10, the entropy

is 2.6 bits. Figure 12.3 shows the entropy of each

time series as a function of the number of AR coef-

ficients. Note that little improvement is obtained for

M � 10. The difference in the performance of the

AR modeling for the two sequences is due to the fact

that the clipped sinusoid is not as well modeled as

a linear filtered noise process: the clipping is non-

linear. Hence, the predictive filter has difficulty in

predicting the values of the time series in the neigh-

borhoods of the boundaries of the clipped portions of

the time series. In the Fourier domain, this implies

that a significant fraction of the power is distributed

among the harmonics (�16%) relative to the funda-

mental impulse at the true period (�84%). Figure

12.4 shows the time series and the residual time se-

ries for these two signals for M = 2.
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Figure 12.3: The entropy of the residuals of a clipped

cosine with an amplitude of 100 and a period of �2

days, and that of an unclipped cosine of the same

amplitude and period as functions of the number of

AR parameters used to predict each time series. The

quantization resolution is set to 312.4, which yields

a quantization noise of 1/4 that of the observation

noise. The entropy, or number of bits required to

represent each time series, initially falls dramatically

as the number of AR parameters is increased from

M = 0, but levels off by M Z 10 for the clipped co-

sine, and by M Z 20 for the unclipped cosine.

This simple example demonstrates that AR mod-

eling can significantly improve the compression of

pixel time series which vary over long time scales.

The predictive filter described in Equation 12.5 is

simply an extension of the standard AR approach for

time series in which the current value of a time se-

ries is a linear combination of previous values added
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Figure 12.4: Time series consisting of a clipped co-

sine of amplitude 100 and a period of �2 days in

unit variance observation noise, and an unclipped

sinusoid of the same period and amplitude, along

with the residuals of filtering each time series with 2-

parameter predictive filter obtained from an autore-

gressive analysis. Since the residuals are confined to

a small region about zero, they are easier to compress

compared to the original time series.

to a random increment. The coefficients of Equation

12.5 can be determined nearly as easily as can those

for a pure AR model. To make this explicit, consider

the error signal, e(n), given as

e(n) = p(n) −
 
p(n) 
 (12.7)

and consider the mean square error

E = �e(n)2�
= �[p(n) − �p(n)]

2�
(12.8)

= � �p(n) −

M
i=1

ai p(n − i) − b�x(n) − c�y(n)�2� |
where + � � is the expectation operator. Taking the

derivative of Equation 12.9 with respect to ak and

setting it to zero, we have

0   ¡e(n)S¡ak

= ¢2 £p(n) −

M¤
i=1

ai p(n − i) − bRx(n) − cRy(n)¥ p(n − k)¦
= §p(n) p(n − k)¨−

M¤
i=1

ai §p(n − i) p(n − k)¨−

b §Rx(n) p(n − k)¨− c §Ry(n) p(n − k)¨ (12.9)

= Rp(k) −

M¤
i=1

ai Rp(k − i) − bRpNx(k) − cRpNy(k) V
where Rp, Rp

�
x and Rp

�
y are the autocorrelation

function of p(n), the cross correlations between p(n)

and !x(n) and !y(n), respectively, and we assume

that the observation noise and the jitter offset time

series !x(n) and !y(n) are uncorrelated with each

other. Similarly we obtain the following equations

for the partial derivatives of E with respect to the

jitter offsets

0 � ©e(n).©b (12.10)

= Rpb(0) −

M,
i=1

ai Rp
�

x(i) − bR�
x(0) − cR�

x
�

y(0)

and

0 � ©e(n).©c (12.11)

= Rpc(0) −

M,
i=1

ai Rp
�

y(i) − bR�
x
�

y(0) − cR�
y(0) 


where R�
x
�

yis the crosscorrelation of !x(n) and!y(n). Combining Equations 12.10, 12.11 and 12.12

together into a matrix form, we have

Ra = r 
 (12.12)

where the matrix R is given byª«««««««¬
Rp(0) � � � Rp(M − 1) Rp

�
x(1) Rp

�
y(1)

Rp(1) � � � Rp(M − 2) Rp
�

x(2) Rp
�

y(2)
...

. . .
...

...
...

Rp(M − 1) � � � Rp(0) Rp
�

x(M) Rp
�

y(M)

Rp
�

x(1) � � � Rp
�

x(M) Rp
�

x(0) R�
x
�

y(0)

Rp
�

y(1) � � � Rp
�

y(M) R�
x
�

y(0) Rp
�

y(0)

®®®®®®®̄

(12.13)

a is given by

a = �a1 a2 � � � aM b c�T 
 (12.14)
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and

r = �Rp(1) � � � Rp(M) Rp
�

x(0) Rp
�

y(0)�T �
(12.15)

The solution to Equation 12.12 is trivial given the

cross correlations Rp, Rp
�

x, etc. Fortunately these

can be estimated directly from the time series p(n),!x(n) and !y(n) themselves. An alternate perspec-

tive views this problem as one of regressing the time

series p(n) in terms of delayed versions of itself and

the time series !x(n) and !y(n). Defining the design

matrix A asª«««¬p(1) � � � p(M) !x(0) !y(0)

p(2) � � � p(M + 1) !x(1) !y(1)

p(3) � � � p(M + 2) !x(2) !y(2)
... � � � ...

...
...

®®®̄
 (12.16)

and the vector p as

p = �p(0) p(1) � � ��T 
 (12.17)

we find the familiar least-squares solution

a =

9
ATA;−1

9
AT p; � (12.18)

We note that numerically efficient on-line methods

for determining the AR coefficients exist. Perhaps

the most appropriate would be an adaptation of the

Least Mean Square (LMS) algorithm, which has en-

joyed much success and popularity in a variety of

adaptive filtering applications (see, e. g., 50). This

algorithm would allow the spacecraft to both learn

and update the AR parameters efficiently without in-

tervention by the Ground Segment, and without the

need to compute inverses of correlation matrices. Of

course, in this case the AR parameters would need to

be downlinked along with the compressed pixel time

series every time they were updated. Next we’ll ex-

amine the compressibility of simulated Kepler data.

12.3 Compressing Simulated Kepler

Data

This discussion draws significantly on analysis of

synthetic pixel time series generated by modeling

software called simkepccdpoly, which efficiently

generates realistic, simulated data for one CCD

channel. A collaboration between the author and

Daniel Peters of Ball Aerospace & Technologies

Corporation has led to the development of simkepc-

cdpoly. We won’t describe this software in detail,

as it is described elsewhere, but will summarize its

salient features (see, e. g., 63; 94). Simkepccd-

poly incorporates realistic characteristics of the Ke-

pler photometer, including pointing jitter, flight point

spread functions (PSFs), CCD operating parameters,

such as dark current, pixel size, charge transfer effi-

ciency, exposure time, readout time, read noise, etc.

The software also incorporates realistic astronomi-

cal information such as the density of stars with as a

function of apparent magnitude down to 26th magni-

tude, and zodiacal light. Cosmic rays can also be in-

jected based on a radiation environment analysis by

Ball Aerospace & Technologies Corporation (Neil

Nickles, personal communication). In the simula-

tions discussed in this section, cosmic rays have been

added to the pixel times series, but they have not

been detected and removed either at the 15 minute

level or at the individual exposure level. An impor-

tant parameter for determining onboard storage re-

quirements is the average number of pixels down-

linked per star. Figure 12.5 shows the number of

pixels per target star as a function of apparent mag-

nitude for the required jitter PSD and the best focus

PSF. The average number of pixels for stars brighter

than 14th magnitude is only 15.2 pixels. The average

number of pixels for stars brighter than 15th magni-

tude is 12.26 pixels. We’ll adopt a conservative value

of 20 pixels for our calculations.

We’ll consider two different jitter PSDs in investi-

gating the compressibility of Kepler pixel time se-

ries: the required forward sum PSD, and the pre-

dicted performance PSD. Throughout this discussion

we’ll assume that the requantization has been per-

formed to limit the quantization noise to 1/4 that of

the shot noise, so that the combination of shot noise

and quantization noise is about 3% larger than that

due to shot noise alone. Note that this does not in-

clude the effects of stellar variability.

First we’ll examine a data set with target stars

from 9th to 16th magnitude for jitter with a power
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Figure 12.5: The number of pixels required per target

star as a function of the apparent magnitude. The

best focus PSF and the required jitter PSD were used

to generate the synthetic data. An algorithm which

performs a signal to noise ratio analysis determined

the pixels to be used in constructing flux estimates

for each target star. The average number of pixels

per target star for the magnitude range between 9th

and 16th magnitude is 10.4 pixels.

spectrum matching the required jitter PSD envelope.

Figure 12.6 shows the entropy of target star pix-

els from this run ordered from the brightest to the

dimmest pixel. The ensemble entropy of the requan-

tized target star pixels in the absence of a predictive

filter is 5.5 bits. With a predictive filter that has the

form given in Equation 12.5 with M=0 (i. e., no de-

pendence on previous samples other than removing

an average value), the ensemble entropy is 2.6 bits.

This is close to the theoretical minimum of 2.3 bits

for the chosen level of quantization, and increases the

data storage capability of the SSR by 220%. Figure

12.7 shows the corresponding pixel entropies for the

performance jitter PSD. In this case, the difference

between the entropies of the requantized pixel time

series and those of the residual time series are less

stark: the ensemble entropy of the former is 3.1 bits,

while that of the latter is 2.6 bits. If attitude informa-

tion is not used to predict and compress pixel time se-

ries, then the required jitter PSD is less amenable to

compression than the performance jitter PSD. These

simulations, however, do not include the effects of

stellar variability, which might force us to use higher

orders of AR modeling to obtain good compression

ratios.
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Figure 12.6: The entropy of pixel time series for Ke-

pler target stars for the required jitter PSD. There are

500 stars spanning apparent brightnesses from 9th to

16th magnitude. The ‘x’s denote the entropy of each

requantized pixel time series, while the crosses de-

note the entropy of the residual time series obtained

by removing the dependence of the pixel bright-

nesses on the jitter. For the required jitter, the ensem-

ble entropy of the pixel time series is 5.5 bits, while

that of the residuals is 2.6 bits. For the performance

jitter, the ensemble entropy of the pixel time series is

3.1 bits, while that of the residuals is 2.6 bits. In both

cases the entropy of the residual pixel time series is

close to the theoretical minimum of 2.3 bits for the

chosen level of requantization.

We investigated the effect of stellar variability on

the compressibility of Kepler’s pixel time series by

adding segments of DIARAD.SOHO observations

of the Sun from January 1996 into March 2000 to

the pixel time series before quantization. For a de-

scription of these time series see e. g., Jenkins (60).

We also scaled the amplitude of the solar variability

by scale factors ranging from as low as 1/100 to as

high as 100. Figures 12.8 and 12.9 show the entropy

as a function of the scale factor used to amplify the

solar variability segments for four different predic-
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Figure 12.7: The entropy of pixel time series for Ke-

pler target stars for the performance jitter PSD.

tion filter schemes. The first filter is a first difference

filter incorporating no jitter information. This is es-

sentially an M=1, c = d = 0 AR filter and hence, can

track time-varying processes since it is a simple high

pass filter. It can also amplify high frequency noise,

though. The second filter is an M = c = d = 0 filter:

only the average of each pixel time series has been

removed. Its only ability to track time-varying pro-

cesses is provided by the block size used to partition

the data for downlink. The third filter is an M = 0,

c = d = 1 filter that accounts for linear terms in jitter,

and for which the average value of each pixel time

series has been removed, as in the second filter. The

fourth filter has M = 5, and c = d = 1. For scale factors

from 0 to 2 or 3 solar, the latter two filters yield com-

parable results that are significantly better than those

for the first two filters. As the solar amplification

factor increases, the entropies of the residual pixel

time series for all four filters and for both jitter PSDs

increase. As expected, the fourth filter outperforms

the other three for all values of solar variability. The

key result is that a filter can be found that limits the

entropy of the residual time series to no more than�5 bits for M 0 5. Higher values of M would result

in lower entropies. It is likely that the vast major-

ity of target stars will exhibit photometric variability

comparable to that of the Sun. Taking an amplifica-

tion factor of 10 times solar as a conservative limit,

we can expect to compress Kepler target star pixel

time series to no more than �3.5 bits, or 70 bits per

star per 15-min period (for 20 pixels per star). Thus,

for 200,000 stars, a day’s worth of 15-min measure-

ments should require no more than 1.25 Gbit, so that

the SSR can hold 51 days of data.
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Figure 12.8: The entropy of pixel time series for

Kepler target stars including the effects of ampli-

fied solar-like variability. The solar-like variability

has been scaled from 0.01 to 100 times that of the

original DIARAD/SOHO time series and added to

each of 5,000 synthetic Kepler pixel time series for

500 target stars spanning apparent brightnesses from

9th to 16th magnitude. Four different predictive fil-

ters have been used to improve the compressibility

of the residual time series. The solid curves denotes

the entropy of the residuals obtained by applying a

first difference filter to the requantized pixel time se-

ries. The dashed curves denotes the entropy result-

ing from merely removing the average values from

the time series. The dash dot curves results from re-

moving the average and linear terms in jitter offsets

from each time series. The dotted curves denotes the

entropy resulting from applying a 5-parameter AR

filter to each time series including linear terms in jit-

ter offsets. The required jitter PSD is included in the

results displayed.

How would Kepler be able to implement AR pre-

dictive filters? Given that M = 1 or M = 0 AR fil-

ters with c = d = 0 result in admirable compression
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Figure 12.9: The performance jitter is included in the

results shown. For the required jitter, the entropies

range from �5 to �6 bits for the first two filters over

the entire range of scaled solar-like variability. The

entropy for the two filters which take into account

jitter attain entropies of �2.6 bits for solar-like vari-

ability, and rise beyond 3 bits only for solar-like vari-

ability scaled up by a factor of 10. Clearly, the com-

pressibility of Kepler-like pixel time series is domi-

nated by jitter for the required jitter PSD. In contrast

to the case of the required jitter PSD, the entropies

for the performance jitter in b) for all four filters are

at or below �3.5 bits for solar-like variability, rising

to � 5 bits only for solar-like variability scaled by at

least a factor of 60 above that of the Sun. The com-

pressibility of Kepler-like pixel time series is dom-

inated by jitter for the performance jitter PSD for

solar-like variability, but this dominance relaxes for

stellar variability far higher than that of the Sun.

rates, I would suggest that the flight software be ini-

tialized in one of these two configurations. Once

several weeks of data have been obtained, it would

be possible to estimate the AR parameters from the

downlinked pixel time series and upload them to the

spacecraft. Given the DIARADSOHO observations

of the Sun, and less precise observations of variable

stars from ground-based instruments, I believe that

the AR parameters for most stars would be slowly-

varying. Indeed, the effects of differential velocity

aberration may force the updating of the AR parame-

ters rather than changes in the behavior of individual

stars. The jitter information can be supplied either by

the ADCS or by centroiding of bright fiducial target

stars in the FOV.

It is important to note that a great deal of flexi-

bility exists for implementing the AR filters. Since

the outputs are restricted to be integer time series,

the arithmetic need not be floating point. The goal is

not to perfectly predict the time series, but rather to

predict them well enough so that small residuals are

obtained. We note that the AR predictor proposed

here is relatively insensitive to errors in the AR coef-

ficients. For solar-like variability, the ensemble en-

tropy increases by only 0.1 bits for a predictor with

10% errors in the AR parameters, and by 0.9 bit with

50% errors in the AR parameters. For 10� solar

variability the increase in entropy is 0.2 bits and 1.2

bits for 10% and 50% errors in the AR parameters,

respectively. The predictions could also be used to

identify and remove cosmic rays at the 15-min level

if that were desirable. It cannot be overemphasized

that the only penalty incurred by using suboptimal

AR coefficients or by drifting AR coefficients is that

the level of compression will be somewhat degraded

relative to the achievable level. Data will not be lost

in any case due to less efficient prediction. The valid-

ity of any implemented predictive filter will be mon-

itored closely by the Ground Segment. Indeed, any

updates to the predictive filter tables can only be gen-

erated from an analysis of downlinked pixel time se-

ries. This task is straightforward and requires only

modest computing resources. We turn briefly to en-

tropic encoding before concluding this article.

12.4 Entropic Encoding of Digital

Data

Once an appropriate predictive filter has been speci-

fied, it is necessary to consider the task of encoding

the residual pixel time series for storage and later

transmission to the ground station. This is the job

of an entropic encoder which takes advantage of the

non-uniformity in the distribution of a class of data to

realize the promise of the compression implied by its

entropy. We will briefly describe the classic Huffman
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coding scheme, which is but one of several possible

entropic encoders.

A Huffman code examines the frequency of all

possible symbols and designs bit strings for each one

in such a way so that the most likely symbols are

assigned the shortest bit strings and the least fre-

quent symbols are assigned the longest bit strings

(see, e. g., 59; 91). To do this, a tree is constructed

that contains each symbol as a leaf. The two least fre-

quent symbols are first combined to form a node on

the tree, and their relative frequencies are summed.

At the next step, the two least frequent nodes (includ-

ing leaves, since they are nodes, too) are combined

in the same way and the process continues until only

two nodes remain, which are combined into the root

of the tree. To determine the code for a particular

symbol, the tree is traced from that leaf up to the root,

and a bit is assigned at each branching node, with left

branches assigned a ‘0’ and right branches assigned

a ‘1’ (or vice versa). The bit string assigned a sym-

bol is the string of branching labels tracing the route

from the root to the leaf. The least frequent sym-

bols have the longest journey to the root, so they are

assigned the longest bit strings. The most frequent

symbols have the fewest branch nodes between them

and the root and so receive the shortest bit strings. To

decode a message, one begins at the root, traveling

down the tree as bits are read in (branching left for

a ‘0’ and right for a ‘1’) until a leaf is encountered,

which determines the next decoded symbol that was

transmitted. The pointer is reset to the root and the

process begins anew for the next bit.

The Huffman code achieves the lowest bit rate on

average of all possible coding schemes. Figure 12.10

shows the length of each codeword as a function

of both the requantized pixel value and the residual

pixel value for simulated Kepler pixel time series for

the required jitter PSD. Huffman coding is fairly ef-

ficient. The actual average number of bits necessary

to implement the Huffman code was 4.97 bits for the

requantized values and 2.65 bits for the residual val-

ues obtained with M = 0 and c = d = 1. These en-

tropies are very close to the theoretical values based

on the distributions: 4.93 bits and 2.61 bits, respec-

tively. A linux box at Ames codes each 16-bit, 1027

by 1024 difference frame in 0.53 sec and decodes

each difference frame in 0.44 sec. There are alterna-

tives to Huffman coding. Perhaps the most likely one

is arithmetic coding, which represents each message

as a real number between 0 and 1.
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Figure 12.10: The lengths of codewords for Huffman

codes for simulated Kepler data for the required jit-

ter PSD. The solid curve shows the codeword lengths

for the residual pixel time series having jitter re-

moved, while the dashed curve shows the codeword

lengths for the requantized pixel time series. The

range of pixel values is smaller for the residuals than

it is for the requantized values so that there are fewer

codewords. The asymmetry in the ranges about zero

are due to undetected cosmic rays, which can only

inject positive charge. Note that the realized en-

tropies are 4.97 and 2.65 bits for the requantized and

residual values, respectively. The corresponding the-

oretical values are 4.93 and 2.61 bits, based on a his-

togram analysis of the synthetic data sets.

Note that any message of finite symbols can be

represented this way if the number is represented

in the radix corresponding to the number of possi-

ble symbols. For example, if there were 10 possible

symbols, (‘0’-’9’), the message 0.01243259 would

represent the sequence ‘01243259’. In arithmetic

coding, the unit interval is broken into subintervals

corresponding to each symbol of length proportional

to its relative frequency. The first symbol is encoded

by choosing a number lying in its corresponding in-

terval. The second symbol is encoded by break-
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ing the first interval into a set of subintervals in the

same way as the interval [0
1) was partitioned, and

choosing a number within the sub-subinterval cor-

responding to the second symbol. So if the inter-

val of the first symbol was [0�1
0�2], and the interval

of the second symbol was [0.9,0.91), then the mes-

sage would be bounded on the bottom by 0 �1+ (0�2−

0 �1) �9 = 0 �19, and on top by 0 �1 + (0�2 − 0�1)�91 =

0 �191. The compression is achieved by noting that

smaller intervals take more digits to represent than

larger ones. As symbols are coded, the number of

significant digits which must be kept around grows,

but as the interval containing valid messages shrinks,

the number of digits that change diminish, too, so

that the message-number can be left shifted out of

the register as the process continues. A message is

decoded in a similar fashion, digits are read in un-

til a unique symbol interval is assured (because of

the bounds on the message read in so far), the sym-

bol is added to the decoded message and the pro-

cess continues. Both Huffman coding and arithmetic

coding are standard entropy encoders and everyone

who uses a browser or image display program has

certainly used one or the other, since both coding

schemes are part of the JFIF standard for JPEG en-

coders/decoders.

12.5 Sensitivity to Data Loss

The approach to data compression detailed in the

previous sections does not take into account the ef-

fects of data loss on the ability to reconstruct the

requantized pixel sequences. In this section we ar-

gue that careful design of the ”packaging” of the en-

tropy encoded pixel time series can mitigate propa-

gation of data loss from packets lost in transmission

to other packets successfully transmitted. Addition-

ally, compression of the data minimizes exposure to

data dropouts during transmission and reduces the

time required to successfully transfer a data set com-

pletely intact. First, however, we’ll discuss the phi-

losophy of data compression versus data transmis-

sion over a noisy communication channel.

The goal of an ideal data acquisition instru-

ment is to accumulate non-redundant information

about some phenomenon or process. Indeed,

a huge amount of effort is placed on isolating

independent measurements from redundant, non-

independent measurements in remote sensing and

other applications. For Kepler the ideal instrument

would be one that analyzed the photons entering the

aperture and transmitted the identities of stars har-

boring planets, together with the planetary orbital

periods, transit depths, etc. This would require much

more processing power than Kepler is capable of, not

to mention much more faith than the science team is

willing to place on the design of a flight version of

the data analysis pipeline. The goal of detection and

error correction (DEC) coding is to add bits to each

block of data so that transmission errors can be de-

tected and corrected. In mitigating the effects of a

noisy channel note that DEC requires just as many

additional bits to protect a block of redundant data as

it does to protect a block of non-redundant data. Data

which have been losslessly compressed and DEC-

coded can be transmitted in far less time over the

noisy channel, minimizing the exposure to transmis-

sion errors. Further, a smaller data set allows for

more powerful DEC-coding so that successful trans-

mission can occur with smaller gain margins.

For the Kepler data stream, let us assume that each

pixel is compressed to 3.5 bits on average, and that

there are 200,000 stars consisting of 20 pixels on av-

erage. In this case, four days’ of data can be coded

in 5 Gbits. The current assumption is that the 64

Gbit SSR holds 9 days’ of data, and that 5 days’

of data can be transmitted in 6 hours. This implies

a data transmission rate of 5.92 Gbit hr−1, so that

four day’s of compressed data can be transmitted in

41 min. Assuming that the data link allows 90% of

the packets to be successfully downlinked in a sin-

gle transmission, there is time to transmit the 4-day

block of data 8.8 times in a single Deep Space Net-

work (DNS) pass. Assuming the data dropouts are

independent, then rather than losing 10% of the data,

only 1�29 � 10−9 of the data is lost. As there are� 5�4 �109 bits of data, that implies 7 bits are lost.

This is not the optimal approach to minimize data

loss, however. If selective retransmission is avail-

able, then only lost packets need be retransmitted

so that a loss rate of 1 � 10−20 can be realized in



104 CHAPTER 12. MANAGEMENT OF COMPRESSION PARAMETERS

45 min, neglected the time needed to request the re-

transmission of selected packets. Some combination

of selective retransmission and multiple transmission

would optimize the time to reach any given loss rate.

For example, suppose that the spacecraft is 0.25 AU

away so that the light time delay is 4 min from the

time a request is made to when the selected data is re-

ceived at the DSN. The initial transmission of 4 days

of data takes 41 min followed by 4 min to request

and begin receiving the first selected lost packets. At

this point it probably makes most sense to request re-

transmission only once more for the 1% of the data

that failed to make it through, and to repeat the trans-

mission of these packets 17 times. Each transmission

of these packets takes �4 s, for a total of 59 min

(41+4+4.1+4+.41�17). Compressing the data makes

it easier to successfully downlink a completely intact

set of data.

Although the foregoing discussion illustrates why

compression is a good idea, we still need to con-

sider the effect of lost bits on the ability to recon-

struct intact neighboring packets. For AR predic-

tors with M = 0, this is not an issue since reconstruc-

tion requires knowledge of only the residual, the off-

sets !x(n) and !y(n) for that timestep (except for

c = d = 0, in which case the attitude offsets are un-

necessary), and the average pixel value, :p, that was

removed from the entire block of data. It’s true that

the ‘full word’ or average that was removed is essen-

tial, but this can be mitigated by also transmitting the

difference between the last pixel value in the block

of data and the next :p value to be used. That way, if

the ‘full word’ is lost for any reason, the full word for

the previous or the following block can be used to re-

construct the data samples. This idea carries over to

AR predictors with M � 1. Rather than transmitting

one requantized pixel, a set of M values are trans-

mitted. At the next block boundary, the backwards

residual from the last pixel value to the next set of

M initial pixel values is transmitted as well, to insure

that the pixel time series can be reconstructed back-

wards from the following block in case a gap occurs.

In case c °= 0 and d °= 0, it will be important to pay

special attention to successfully transmitting !x(n)

and !y(n), however they are constructed on board.

This leads to a consideration of how big to make

the blocks. For M=0 predictors the block size deter-

mines the adaptability of the system to stellar vari-

ability. For solar-like stars most of the variability oc-

curs on timescales �1 day. Having a block size of 1

day then, should be adequate to track changes in stel-

lar variability for such stars. This is supported by the

simulations discussed in §12.3. For M = c = d = 0, a

block size of 1 day implies �1% overhead for the

compressed data (prior to DEC coding). In these

cases, the number of data dropouts doesn’t matter in

the sense that so long as :p (and perhaps !x(n) and!y(n) are transmitted), lost data packets don’t im-

pede the ability to properly interpret intact data pack-

ets. For M � 1, however, this is not the case. The AR

predictors described here can reconstruct pixel val-

ues either forwards or backwards to a gap from the

initial pixel values at a block boundary, but not across

a gap. The block size in this case must be chosen so

that it is highly unlikely that more than one gap in

the data stream will occur. This is a straightforward

engineering task, so long as the data channel is prop-

erly characterized, but is beyond the scope of this

document. Given that the size of the data sets to be

downlinked are rather small, this issue should not be

a problem.



Chapter 13

Management of Cosmic Ray Rejection

Parameters

This chapter discusses the management of the cos-

mic ray rejection software parameters for the flight

software. The cosmic ray rejection algorithm for

the flight software attempts to identify cosmic ray

hits, which deposit photoelectrons in affected pix-

els in the FOV. The anticipated flux rate of cosmic

rays is 5 cm−2 s−1, so that on average, each 27 �m

pixel receives a direct hit �3 times per day. How-

ever, cosmic ray events deposit charge over a range

of pixels depending on the inclination angle of the

ray to the CCD. The information available in flight

is restricted to the current pixel measurement and the

previous 15-minute average of the pixel value. This

is sufficient to design an optimal detection threshold,

assuming the distribution of the cosmic ray-injected

photoelectrons is known, and that the individual ex-

posures are dominated by shot noise and a fixed read

noise. This is not the case, however, as pointing off-

sets on the 3-sec timescale are likely to be important

for a majority of the pixels of interest. The task is

to define a practical threshold based only on the dif-

ference between the current pixel measurement and

the average value from the previous 15-min frame.

This task appears to be manageable. The SOC shall

provide the detection thresholds based on modeling

efforts preflight. These shall be updated once actual

flight data is acquired.

This chapter was written and included prior to the

baseline change of removing the cosmic ray detec-

tion and rejection from being an on-board process-

ing step. At this time the cosmic ray detection and

rejection processing is expected to be done on the

ground. Because this is a recent change, very lit-

tle work has been done to modify the contents of this

chapter to make it directly applicable to this new pro-

cessing venue.

The chapter is organized as follows: In §13.1 we

discuss the energy distribution of the cosmic ray flux

and the method by which we transformed this distri-

bution into the distribution of charge deposited per

pixel per event. A summary of the results and a set

of recommendations is set forth in §13.2.

Although the detection and removal of cosmic

rays on board the Kepler spacecraft is no longer

planned, the method described in this chapter is ex-

tendable to a ground-based detection and removal

methodology and will likely be developed for inclu-

sion in the SOC Pipeline or other processing venue.

13.1 The Cosmic Ray Flux

The cosmic ray flux environment has been of great

concern to almost all space missions with CCDs that

are sensitive to cosmic rays. The actual flux expe-

rienced by a device depends a great deal on the ex-

act orbit, that is, is the spacecraft in low Earth orbit

(LEO), or is it in deep space? The flux also depends

on the shielding and configuration of the detectors

within the spacecraft, which can affect the generation

of secondaries from primary events. In any case, the

Kepler Mission has adopted a flux rate of 5 cm−2 s−1

based on previously flown missions in similar orbits,

such as SOHO.

A study was conducted at Ball Aerospace Tech-

105
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nologies Corporation (BATC) to derive the distribu-

tion of total charge deposited into a CCD for each

cosmic ray hit (Neil Nickles, personal communica-

tion). The results are displayed in figure 13.1, which

shows a mode of �2500 e−, little or no charge be-

low �2000 e−, and a long upper tail trailing out to

at least 100,000 e−. We note that 90% of events de-

posit less than 6,200 e− into a CCD. To put this into

perspective, note that an mR=12 star occupies about

25 pixels, and that over 6.5 hours, about 4 � 109 e−

accumulates in its aperture. The shot noise for such

a star will be 63,245 e−. Now, 25 pixels receive a

cosmic ray flux rate of 21.3 per 6.5 hr interval. Since

the occurrence of cosmic rays follows a Poisson dis-

tribution, then the standard deviation of the number

of events in the star’s aperture is 4.55. Assuming

that 2,500 e− are deposited with each event, then the

noise from the cosmic rays in a 6.5-hr interval is 4.55

times 2,500 or 11,384 e−. This most likely is too low,

since the energy deposited by a single cosmic ray hit

varies over such a large range. If we generate ran-

dom deviates using the transformation method from

the distribution given in Figure 13.1, then we obtain

a standard deviation of 24,500 e− for the charge de-

posited in each 6.5-hour interval, or about 6 ppm rel-

ative to stellar flux. Thus, the cosmic ray flux is ex-

pected to increase the noise budget by about 5% if

nothing is done to detect and remove charge injected

by cosmic ray events.

The point in time at which cosmic rays are most

readily identified and removed is when each CCD

pixel is read out, and before it is added to the run-

ning 15-min sum. Kepler’s CCDs are 1132�1066

devices when the 32 virtual columns and 20 virtual

rows are accounted for. For a 0.5 second readout

time, then there is �400 ns or about 20 clock inter-

vals to read out each pixel, detect cosmic rays, cor-

rect for any detected cosmic ray, and add the current

value to the running sum. Furthermore, the tasks as-

sociated with operating the CCDs from the readout

to the accumulation of 15 minutes of data will be

implemented using FPGAs (field programmable gate

arrays). Thus, the operations that can be performed

are not only limited by the time interval available, but

in the type of operation that can be performed, since

FPGAs are not general purpose computers (i. e., no
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Figure 13.1: The distribution of the total charge de-

posited into a Kepler CCD per cosmic ray event.

This distribution resulted from modeling taking into

account the expected cosmic ray environment for Ke-

pler’s orbit, and a detailed structural model for the

spacecraft, the instrument, and any planned radiation

shielding (Neil Nickles, personal communication).

floating point operations).

Another limitation is that the only information

available to detect cosmic rays (aside from the cur-

rent pixel value), is the value for the previous 15-

min co-add interval. The difficulty this presents is

that there is not even an estimate of the variance of

each pixel at the single exposure timescale, let alone

knowledge of the distribution of the flux accumu-

lated per pixel per exposure. Ideally, one would ana-

lyze the distribution of the pixel values for both cases

of cosmic rays present and no cosmic rays, which to-

gether with the cosmic ray flux rate would allow for

the determination of an optimal detection threshold

for each pixel. So the major task to be addressed

is whether a practical and effective cosmic ray re-

jection algorithm can be fashioned that uses only a

moving 15-min average pixel value for both detrend-

ing and for determining the threshold value. In the

absence of residual pointing offset errors by the At-

titude Determination and Control System (ADCS),

this would not be a problem. In that case, the statis-

tics of each pixel’s flux time series would be domi-

nated by the Poisson noise associated with counting
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photons. The ADCS is not perfect, however, and the

3-sec to 3-sec variations in flux due to modulation

of pixel brightness by pointing drifts on these short

time scales might exceed or dominate those due to

shot noise.

To study the issue of rejecting cosmic rays in indi-

vidual exposures we need to know what the distribu-

tion is for the charge injected into individual pixels

by cosmic ray events. To transform the distribution

in Figure 13.1 to the desired one, we applied the fol-

lowing assumptions. 1) The total charge deposited

is uniformly distributed over the path traveled by the

the cosmic ray as it traverses the CCD slab. 2) The

charge deposited by the cosmic ray diffuses the same

way as is charge from actual photons. Given the ge-

ometry of the CCDs (27 �m � 27 �m � 16 �m),

we traced random rays through a 13 by 13 pixel re-

gion of a CCD, distributing the charge in each pixel

encountered by a ray according to the assumptions

above. The CCD pixels were divided into 13�13

sub-pixels for the purposes of the numerical calcu-

lations. We amassed a catalog of 6,097 cosmic ray

trails, normalized so that the sum of each trail was

unity. Each trail, then, could be scaled by a random

deviate drawn from the total charge distribution to

model the effect of a single cosmic ray.

With this library of cosmic ray trails and the to-

tal charge distribution in hand (and the cosmic ray

flux rate), we are in a position to simulate the ef-

fects of cosmic rays on a CCD image of any given

exposure time. (We note that cosmic rays are ac-

cumulated during readout, too, so that physical pix-

els experience cosmic rays for the full exposure plus

readout interval. We’ve ignored the fact that the dif-

fusion of the charge for a cosmic ray even during

readout might differ from that for one experienced

during an exposure, as well as the differences in cos-

mic rays for virtual pixels, which only exist during

readout.) While this information can be used to gen-

erate cosmic ray events with ‘realistic’ spatial fea-

tures, there is no way to incorporate spatial correla-

tions into the cosmic ray detection algorithm for the

flight system. Thus, rather than using the 2-D library

and the total charge distribution, we can simply his-

togram the charge injected into the pixels of a CCD

for a given time interval (without any other flux), and

then generate a distribution for the charge injected

per pixel per unit time, independent of the spatial

correlations. Simulated cosmic ray events can then

be generated more rapidly from a single distribution

using the transformation method than can be accom-

plished for the 2-D library and the total charge distri-

bution. Figure 13.2 shows the distribution of charge

from cosmic ray events accumulated per pixel per 3

sec interval.
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Figure 13.2: The distribution of the charge deposited

into each Kepler CCD pixel per cosmic ray event per

3 sec.

The first question that can be answered from this

distribution, is what is the noise added per pixel per

3 sec interval? The answer is �22 e−, so that the

noise for a mR=12 star occupying 25 pixels over a

6.5-hr interval is 9714 e−, or 2.4 ppm relative to the

stellar flux, assuming that the noise introduced by

cosmic rays is independent from pixel to pixel. This

value lower than the value obtained by looking at the

charge accumulated in an aperture by a factor of 2,

indicating that on average, 4 pixels are affected by

a given cosmic ray. This correlation must be con-

sidered when calculating noise in a given aperture

from noise on individual pixels. The question to be

answered now, is what can be done to reduce the

amount of noise introduced by cosmic rays by work-

ing at the single exposure timescale?

To answer this question, we performed a set of
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simulations using the End To End Model (ETEM)

developed by a collaborative effort by J. Jenkins

(SETI Institute) and Dan Peters (BATC). We used

the forward sum required ADCS jitter Power Spec-

tral Density (PSD) developed for the Concept Study

Report (CSR). While the current required jitter PSD

is significantly lower than that of the CSR, our aim

was to obtain a conservative estimate of the power to

discriminate against cosmic rays in the face of 3-sec

to 3-sec image motion. It would be entirely appropri-

ate to perform the calculations outlined in this paper

to simulations obtained using either the performance

jitter PSD or the refined and improved required jitter

PSD. The simulations generated pixel time series for

over 4500 pixels corresponding to the pixels of inter-

est for 495 target stars in a synthetic star field on a

single CCD channel. Figure 13.3 shows a histogram

for the ratio of the standard deviation of the synthe-

sized pixel time series due to pointing offsets (i. e.,

without any stochastic noise added) to the shot noise

for the target star pixels on time intervals of 3 sec.
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Figure 13.3: A histogram of the ratio of the vari-

ability of target star pixel time series due to pointing

offsets to the expected shot noise on 3 sec intervals.

The apparent variability of target star pixel time

series can vary by as much as 6 over that expected

from shot noise, as seen in Figure 13.4. The chal-

lenge, then, is to provide a detection threshold that

is high enough to prevent the detector from being

overwhelmed by false positives for those pixels most
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Figure 13.4: The ratio of the total noise of 3 sec pixel

time series to the expected shot noise.

sensitive to image motion, while maintaining a rel-

atively good detection rate for those pixels that are

relatively insensitive to motion. The appropriate cri-

terion to use in setting the threshold is to pick that

value that minimizes the root mean square error be-

tween a pixel time series without cosmic rays, and

the same pixel time series after cosmic rays have

been added and then ‘cleaned.’ This corresponds to

choosing a threshold to minimize the total number of

expected errors if either kind (false alarms or missed

detections).

For this set of calculations, we used the baseline

algorithm: subtract off the previous 15-min pixel

value scaled to 3-sec from the current 3-sec mea-

surement, threshold it, and if it exceeds the thresh-

old, replace it with the scaled 15-min average. Fig-

ure 13.5 shows the optimal threshold determined for

1100 pixels, along with a threshold that was chosen

to track the maximum of the ‘envelope’ of the opti-

mal threshold. We note that in terms of the sample

standard deviation of each pixel time series, the op-

timal thresholds were tightly distributed about 4.3 �
with a standard deviation of 0.28� . The deviations of

the pixel times series are a combination of shot noise

and pointing offset-induced variations. Figure 13.6

shows the ratio of the optimal and the max-envelope

thresholds relative to the shot noise for these pix-

els. There is a clear relationship between the max-



13.2. DISCUSSION 109

envelope threshold and mean pixel brightness, since

the latter is the square of the shot noise. The RMS

errors between “cleaned” cosmic ray-corrupted pixel

time series and the original time series is given in

figure 13.7, showing that thresholds can be chosen

based on mean pixel brightness that result in reason-

able detector performance. Figure 13.8 shows the

ratio of the RMS error to the shot noise for both

optimal and max-envelope thresholds, showing that

the baseline cosmic ray detection algorithm can limit

the effects of cosmic rays to below one tenth that

of the shot noise across the dynamic range of the

CCDs. The effect is even more pronounced at pixel

fluxes less than about 2% well depth, where the ef-

fect can be limited to as little as 0.06 that of the shot

noise. The root sum square (RSS) combination of

cosmic rays and shot noise is less than 1% greater

than shot noise alone across the dynamic range, and

is as little as 0.4% greater at less than 2% well depth

(where we’ve assumed that the spatial correlations

will “double” the square root statistics of individual

pixels).
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Figure 13.5: The optimal (crosses) threshold for each

pixel time series that minimized the chosen error

function along with a threshold (circles) that tracks

the upper bound of the “envelope” of the optimal

thresholds.
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Figure 13.6: Ratios of the optimal (dots) threshold

to the shot noise for each pixel time series that mini-

mized the chosen error function along with the ratio

of a threshold (crosses) to the shot noise where the

threshold tracks the upper bound of the “envelope”

of the optimal thresholds.

13.2 Discussion

The results of the numerical simulations described in

the preceding sections demonstrates that we should

be able to effectively detect and reject cosmic ray

events using a very simple detection algorithm. In

order to implement the algorithm, however, it is es-

sential that the variability of target star pixels be

determined at the timescale of the individual expo-

sure sample intervals. This might be accomplished

through modeling efforts, with a knowledge of the

ADCS performance and detailed characterization of

the optics and the starfield. It could be accomplished

much more easily however with direct measurements

of pixel time series at the single exposure level. Such

measurements would not only allow us to estimate

the sensitivity of pixels to motion, but would allow

us to better determine the distribution of cosmic ray-

induced charge events. I propose that we explore

the possibility of specifying a subsection of the full

84 channels for acquisition during FFI mode. Thus,

we could for example request a series of 84 FFI’s

of which only data for one channel is stored on the

SSR, so that the data set would take up only as much
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time series and pristine pixel time series (i. e., with-

out cosmic rays added) for both the optimal detection

thresholds (crosses) and for the maximum envelope-

tracking threshold (dots).

memory as a full FFI for the entire set of
�

100 mil-

lion pixels. Of course, we would only want to collect

such data during the commissioning phase, and per-

haps during roll maneuvers, but it doesn’t appear to

require new capabilities on the part of the hardware,

and only slightly more flexibility in terms of the soft-

ware. It could provide other un-anticipated diagnos-

tic functions, such as the ability to acquire high-rate

images from a flaky CCD channel.
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Figure 13.8: The ratio of the RMS error between

“cleaned” pixel time series and pristine pixel time se-

ries (i. e., without cosmic rays added) for both the op-

timal detection thresholds (crosses) and for the max-

imum envelope-tracking threshold (dots) to the shot

noise for each target star pixel.



Chapter 14

A Description of the End-To-End Model

This chapter describes the algorithms behind the

End-To-End Model (ETEM) and the methodology

behind them. Emphasis is given to discussing the

limitations of the model and the properties of the var-

ious operating modes.

14.1 Analytical Tools

As part of the development effort, three analytical

tools have been constructed to aid in the design pro-

cess. The first tool is the Combined Differential Pho-

tometric Precision (CDPP) spreadsheet, which tracks

the CDPP for a 6.5-hour transit for a G2V star as a

function of the apparent stellar magnitude and the set

of mission design parameters. The quantity CDPP is

the effective white noise standard deviation in a 6.5-

hour interval that determines the S/N of a 6.5-hour

transit of a given depth. For example, a CDPP of 20

ppm for a star with a planet exhibiting 84 ppm tran-

sits lasting 6.5 hours leads to a single transit S/N of

4.1� .

The second tool is the Kepler Merit Function,

which assesses the value of the science return in

terms of the number of expected planetary detections

for an assumed planetary population distribution (in-

cluding both habitable and non-habitable planets)

and in terms of the number of stars for which pres-

sure mode (p-mode) oscillations can be studied.

The third tool is the End-To-End Model, which is

a Monte Carlo simulation of the Kepler Photome-

ter producing synthetic data time series at the pixel

level. These three tools are supported by a Noise and

Error List that tracks the effects and magnitudes of

�75 separate stochastic and systematic noise sources

that potentially affect Kepler photometric perfor-

mance.

The first two tools do not produce time series

but rather perform analyses combining the expected

noise and signal properties or predicting the science

return given these properties. As such, ETEM is

extremely valuable in assessing the effects of noise

terms which are not subject to closed form analysis,

such as the effects of pointing ‘jitter’ or the effects of

residual cosmic ray events on the CDPP. This suite of

complementary analytical tools allows us to predict

the performance of Kepler and to measure the effect

of design choices on the scientific return.

The goal of this chapter is to describe the method-

ology behind the current version of ETEM and to

give examples of the investigations it has enabled.

ETEM has been under development since 1995 as a

collaboration between Kepler team members at both

NASA Ames Research Center and at Ball Aerospace

& Technologies Corporation (BATC). ETEM began

as a FORTRAN program that generated synthetic

photometric data for a single star at the pixel level

given a Point Spread Function (PSF), characteriza-

tion of observational noise sources such as sky back-

ground, read noise, and dark current, and a sample

pointing offset time series. This simple model of

an isolated star was later incorporated into a larger

program to simulate 100 target stars together with

the effects of shutterless operation as part of the Ke-

pler Technology Demonstration (KTD) funded by

the NASA Discovery Program (64; 95). Generat-

ing synthetic photometric data is a necessary com-

ponent of assessing the expected photometric perfor-

111
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mance. The back end of ETEM consists of analyzing

the output data to construct light curves and measure

the photometric precision achieved for the input de-

sign. This analysis uses algorithms similar to those

baselined for the actual data processing and analysis

system. These differences exist because the output of

ETEM has been until recently restricted to producing

rather short data sets of up to a few days for relatively

few stars compared to the actual mission data. Over

the past two years we have redesigned ETEM in such

a way as to permit the modeling of millions of back-

ground stars together with up to 2000 target stars on

a single CCD readout area for artificial data runs of

up to three months. In addition to its significantly

improved efficiency, the current ETEM incorporates

a great deal more realism accumulated as the space-

craft and photometer design have matured.

Figure 14.1 depicts the logical flow of ETEM be-

ginning with the steps required to set up the model

for the given system design parameters and ending

with the generation of synthetic photometer data.

The top line of the logic flow contains the sequence

of steps necessary to prepare ETEM for generating

synthetic photometer data. These steps incorporate

all the phenomena relevant to the quantification of

the photoelectronic image read out from a CCD prior

to digitization by the Analog to Digital Converter

(ADC), and the addition of stochastic noise. The

second row of the flow consists of exercising the

model to produce synthetic images, add various ran-

dom noise sources such as shot noise and read noise,

digitize the result, and finally, write the results to

disk. This sequence of steps is repeated until the re-

quested data set is completed.

The major improvements to ETEM reported in

this paper lie in the numerical approach taken to

model the response of the CCD pixels to motion of

the stellar images. The perturbations to the image

position due to tracking errors of the Attitude Deter-

mination and Control System (ADCS) and to astro-

physical effects are either small enough to be well

modeled by polynomial expansions of the pixel val-

ues in terms of the (!x 
 !y) offsets, or occur on

timescales much longer than that of a transit dura-

tion, and hence, are unimportant with respect to de-

termining S/N of a transit. The principal purpose for

ETEM is to analyze noise sources impacting the de-

tectability of transits, although future enhancements

envisioned include modeling of long term astrophys-

ical effects such as differential velocity aberration to

better understand the complications these might pose

with respect to the data processing and target man-

agement.

In order to achieve this efficiency, some simplify-

ing assumptions were made. The stars are assumed

to move together, that is, no provision is made for

parallax, proper motion, or second order effects of

differential velocity aberration. As argued above,

these effects do not significantly affect the S/N of a

transit, but we do need to understand how they might

effect operations and analysis of the data. Intrin-

sic stellar variability is also not currently modeled

for the target or background stars. Stellar variability

for old, main-sequence stars like the Sun occurs on

timescales much longer than the duration of a transit

of a terrestrial planet. The results from ETEM and

the CDPP spreadsheet have been incorporated into

detailed studies of the effects of solar-like variability

on the detectability of transiting Earth-like planets

(60). Provisions have been made in ETEM to allow

for the inclusion of stellar variability into the simu-

lations. Doing so would necessarily reduce the effi-

ciency of ETEM. It is unclear whether this is neces-

sary. To date, ETEM is used mainly to determine the

contribution of noise sources not amenable to anal-

ysis. As such, once a noise term is characterized

by ETEM, its effects are then incorporated into the

CDPP spreadsheet and into the Merit Function. Al-

though we plan to evolve ETEM to incorporate more

realism over time, it is likely that Kepler will con-

tinue to require and exercise several numerical mod-

els during development.

This paper is organized as follows. Section 14.2

describes the steps taken to develop polynomial rep-

resentations for a CCD readout area. Section 14.3

details the generation of synthetic CCD data includ-

ing the addition of stochastic noise to the frames.
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Figure 14.1: Logical flow chart for ETEM. The top flow consists of the sequence of steps necessary to set

up ETEM to generate synthetic images, incorporating the relevant design parameters such as PSF, CCD

dimensions, pixel-to-pixel sensitivity, intrapixel sensitivity, integration time, readout time, etc. The bottom

flow consists of generating synthetic noise-free images, adding stochastic noise, digitizing the result and

writing the data to disk. This is repeated until the requested data set is completed.

14.2 A Polynomial Representation

for the Kepler Photometer

This section details the phenomena incorporated into

the two boxes labeled ‘Generate cCCD’ and ‘Generate

c*CCD’ in Fig. 14.1. With the exception of the effect of

spilling of saturated charge, all the phenomena mod-

eled in ETEM for generating synthetic CCD images

are linear, so that they can be directly incorporated

into a polynomial representation for the response of

a CCD to image motion. Nevertheless, most pixels’

behavior is well modeled by a polynomial represen-

tation, and those few pixels that are not, can be han-

dled separately.

14.2.1 Response of Pixels to Image Motion

As in previous versions of ETEM, the first step is to

determine how the pixels under a stellar image re-

spond to image motion. For a star of brightness I0

located at (x0 
y0), the charge that is developed on the

CCD is

I± = [I0 PSF±(!x0 
!y0) S±(x 
y)] MD±(x
y)
 (14.1)

where � is the wavelength, PSF±(x
y) is the PSF,!x0 = x − x0 and !y0 = y − y0, S± (x 
y) is the sensi-

tivity function of the CCD, D±(x
y) is the diffusion

kernel, and ‘M’ denotes the convolution operator. The

optical PSF is derived from the optical design of the

photometer using a raytracing algorithm (ASAP) for

each of 21 wavelengths across the Kepler bandpass

(420–860 nm)(72).

For S± (x
y), we take the results reported by Jor-

den (65), which are only reported at two wave-

lengths, 600 and 850 nm. Below 600 nm, the varia-

tion of S± is quite small, while at 850 nm, the peak-

peak variation is �10%. Fortunately, models for

D±(x 
y), developed at BATC for the Kepler flight

CCDs indicate that diffusion is important only for

wavelengths shortward of 600 nm, and is not appar-

ent at longer wavelengths (90). This is due to the

fact that the longer wavelength light travels through
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the entire CCD thickness and is absorbed in or very

near the active region, so that there is little oppor-

tunity for diffusion from the absorption site before

readout. At these wavelengths, S± exhibits variations

that are consistent with the physical gate structure of

the CCD. Conversely, this also explains the relative

unimportance of intrapixel sensitivity variations for

short-wavelength light, which is absorbed above the

active region and must diffuse down into it prior to

readout. The ‘blue’ light never sees the gate struc-

ture, which has the opportunity to scatter the ‘red’

light.

Note that the apparent complementarity of D± and

S± implies that I± can be expressed as a cascade

of convolutions involving PSF± , S± restricted to a

single pixel, and either D± or S± . Once I± is de-

termined at all 21 wavelengths, it can be weighted

by the stellar spectrum and photometer bandpass re-

sponse and summed over � to determine the total

charge intensity for each pixel as a function of po-

sition. In the current version of ETEM, we have

modeled the process using a total optical PSF over

the solar spectrum and photometer bandpass, and an

effective charge diffusion kernel prior to considera-

tion of the CCD pixel sensitivity. We have performed

analyses to show that this approach is conservative,

but are working to improve the fidelity of this step as

per the discussion above.

In previous versions of ETEM, the importance of

charge diffusion was not recognized and hence, was

ignored. This is actually a conservative assumption

in that the charge diffusion blurs the optical PSF and

reduces somewhat the sensitivity of the pixel values

to motion. The values of each pixel as a function of

(!x
 !y) offsets from a nominal position were de-

termined by scaling a tabular representation of the

optical PSF (on a 5 by 5 pixel region) with 13 by 13

subpixel resolution, scaling it by the intrapixel sen-

sitivity and then integrating over each pixel region.

This response was evaluated at a particular image

offset for a given jitter time series by bilinear inter-

polation over the tabulated values. The process of in-

terpolation is numerically quite intensive especially

when using cubic or spline interpolation. We note

that this process yielded small but not insignificant

modeling errors as the bilinear interpolation actually

used did not preserve flux for a perfectly uniform

CCD response. The most significant improvement in

computational efficiency for ETEM lies in recogniz-

ing that for Kepler, the expected perturbations to the

CCD images due to pointing ‘jitter’, thermal drifts

and astrophysical effects such as differential veloc-

ity aberration are quite small over timescales of sec-

onds to several days. For example, the pointing off-

set ‘jitter ball’ is required to be no larger than 0.1

arcsec (or 2.5 mpix), 3 � , and is expected to be much

smaller in practice. For such small pointing offsets,

the response of the pixels to image motion is smooth

and well represented by low-order, two-dimensional

polynomials.

The current version of ETEM takes advantage of

this fact and incorporates a polynomial fit to the re-

sponse of each pixel to motion of a stellar image

over a fine grid containing the ‘jitter ball’, resulting

in pixel polynomial coefficients, cpix. For any given

pointing offset within the design region, each pixel

value can then be determined by evaluating the corre-

sponding polynomial for a given pointing offset pair

(! x, ! y) and simply scaling the result to an inten-

sity appropriate for a given magnitude star. Figure

14.2 shows the fitting error between the polynomial

representation and the cubic-spline interpolation of

the pixel response for the required jitter Power Spec-

tral Density (PSD). For the required Attitude Deter-

mination and Control System (ADCS) performance,

we find that 3rd order polynomials adequately repre-

sent the pixel response to motion. The polynomial is

of the following form

p (!x
 !y) = c00 + c10 !x + c01 !y +

c20 !x2
+ c11 !x!y + (14.2)

c10 !y2
+ c30 !x3

+

c21 !x2 !y + c12 !x!y2
+ c03 !y3 �

Higher order polynomials can be applied to provide

better fits or to allow for a larger design range of jit-

ter. Once the polynomials are determined, an entire

CCD frame can be populated with stars using a real-

istic stellar distribution.
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Figure 14.2: The rms fitting error between a cubic spline interpolated representation of response of a pixel

to image motion of a stellar PSF, and a 3rd order polynomial representation. The greatest errors occur near

the PSF core but at the 10−5 level are not significant.

14.2.2 Stellar Population of a CCD Frame

A synthetic star catalog is used to populate a single

CCD readout channel consisting of 1100 columns by

1024 rows.1 The polynomials for each pixel in a

CCD can be determined by simply adding together

the pixel polynomials for all the stars whose images

fall on a given pixel.

Following Batalha, et al. (8), we make use of

galactic models made publicly available by the Ob-

servatoire de Besançon2 (see, e. g., Robin & Crézé

(98), Haywood, Robin, & Crézé (52), and Haywood,

Robin, & Crézé (51)) to obtain expected star counts

as a function of apparent magnitude, spectral type

and age. The USNO-A2.0 database yields 223,000

stars to mR=14.0 in the 1̃12 square degrees of Ke-

pler’s FOV (71). This establishes an appropriate

mean extinction of �1.0 mag kpc−1 for the Besançon

model. We note, however, that the bandpass for Ke-

1The actual flight CCDs have 2200 columns and 1044 rows

with dual readout amplifiers. The bottom 20 rows are masked to

allow for estimation of and correction for the effects of shutter-

less readout.
2http://www.obs.-besancon.fr/modele/modele.ang.html

pler extends from �0.45 to �0.85 �m, which is far

wider than the bandpasses available for the Besançon

models. For the purpose of counting stars, using the

R band should reflect the number of stars of greatest

interest, but may tend to undercount the number of

late main sequence stars. Figure 14.3 shows the dis-

tribution of stars of all luminosity classes and spec-

tral types predicted by the Besançon model for Ke-

pler’s FOV.

To construct the CCD polynomial cccd , we first

generate cpix for 25 different nominal centerings of

stars within their central pixel, on a 5 by 5 sub-

pixel grid. A synthetic star catalog is compiled by

sampling the distribution provided by the Besançon

model, drawing random coordinates for each star in

the CCD’s FOV, and partitioning the stars into 25

polynomial classes. For each polynomial class, each

CCD coefficient frame is determined by adding the

stellar intensity to the center pixel on a blank 1100

by 1024 pixel array, and then convolving this “im-

pulse frame” with each 11 by 11 coefficient array

for each of the 10 polynomial coefficient planes (as-

suming 3rd order polynomials). In this way, efficient
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Figure 14.3: A histogram showing the distribution of the density of stars with apparent R magnitude. All

luminosity classes and spectral types are represented.

Fast Fourier Transform (FFT) methods can be used

to assemble each coefficient frame for each of the

25 stellar polynomial classes. The resulting polyno-

mial frames are added together sequentially for each

polynomial class as they are computed.

Given a pointing offset matrix A jit and the CCD

coefficients, cCCD
3, the charge deposited in a given

interval of time is CCD = A jit cCCD. In ETEM, cCCD

is scaled so that evaluation of the polynomial yields

flux in e− s−1. Figure 14.4 shows a 2-D histogram

of a realization of a jitter time series for the expected

ADCS performance binned to 2 Hz sampling. We are

now in a position to generate synthetic CCD images

for a pointing offset time series.

3Note that the polynomial coefficients are denoted by bold-

face. This is to indicate that the cCCD is a matrix whose columns

correspond to the polynomial coefficients, and whose rows cor-

respond to each of the pixels under analysis. The evaluation of

the CCD polynomial can then be expressed using matrix alge-

bra, although the results must be reshaped to recover the original

dimensions of the CCD.

14.2.3 Additional Imaging Phenomena

The polynomial representation cCCD developed in the

previous section allows us to evaluate the charge de-

veloped on a CCD for a given attitude, but it does

not factor in all the relevant effects. In particular,

we need to accommodate additive noise sources such

as dark current, zodiacal light and the effect of the

shutterless operation. Saturation effects must also be

considered, along with Charge Transfer Efficiency

(CTE), but these are the subjects of §14.2.4.

There are two purely additive fluxes that do not

respond significantly to image motion: dark current

and zodiacal light. Dark current accumulates during

exposure and readout of the CCDs and is a strong

function of the operating temperature of the CCD.

Although the operating temperature of Kepler’s fo-

cal plane is so cold (+ −90�C) that the dark cur-

rent is expected to be negligible, it is still accommo-

dated in ETEM. The zodiacal light is solar flux that

is scattered from dust grains in and above the ecliptic

plane into the Photometer’s aperture. Characteriza-

tion of zodiacal light by the Hubble Space Telescope

implies that the zodiacal background will inject the

equivalent of an mR=19 star in every CCD pixel (4
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Figure 14.4: A 2-D histogram showing the distribution of pointing offsets for the expected ADCS perfor-

mance for Kepler binned to 2 Hz sampling. The standard deviation of the pointing is 0.01 pix in each

axis.

arcsec by 4 arcsec). This is much higher than the

expected dark current. Neither dark current nor zo-

diacal light will vary with the expected pointing er-

rors, although zodiacal light will vary smoothly over

large spatial scales and on time scales of months. For

the time scales of most interest to ETEM, these flux

sources can be simply added to the constant term in

cCCD.

At this point ETEM incorporates pixel to pixel

sensitivity variations. This is particularly simple as it

amounts to scaling each pixel polynomial by the rel-

ative sensitivity of the pixel. Most ETEM runs use

a highly conservative value of 5% for the interpixel

sensitivity variations and draw each pixel’s relative

sensitivity from a Gaussian distribution.

The fact that Kepler lacks a shutter has signifi-

cant but mostly benign implications for the CCD im-

ages. During readout, each row is clocked down the

CCD, passing under any stars falling on the CCD be-

low their position during the exposure. At the same

time, new rows are being read in from the top of

the CCD and clocked down to their nominal loca-

tions for the next exposure, passing underneath stars

above their exposure positions. The resulting images

contain vertical streaks due to star light accumulat-

ing in the pixels along each column during readout.

The smear component can be calculated by summing

each frame of coefficients along the columns, scaling

for the exposure time spent in each row. The smear

polynomial only responds to image motion along the

rows, except at the very edges of the CCD. Account-

ing for smear in cCCD amounts to replicating the row

polynomial for smear and adding it to each of the

rows in cCCD. There is a provision for overclocking

the CCDs by 20 rows for testing purposes, but also

to allow for a separate estimate of smear. Such over-

clocked rows do not exist during the exposure, so

while they pick up smear as they are clocked through

the field, they do accumulate some dark current dur-

ing readout.

Another source of flux exists: scattered light in the

photometer. Studies have been performed to estimate

the fraction of the focal plane that will be adversely

affected by ghost images from the handful of mR 06

stars in the FOV. At this point, however, the design is

not mature enough to quantify and model the effect

in ETEM. The methodology used to model the star

field applies to the ghosts and will be used to model
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the effect once sufficient data is collected during test-

ing.

14.2.4 Saturation and Charge Transfer Ef-

ficiency

All the previous phenomena represented linear trans-

formations of the polynomials representing the re-

sponse of the CCDs to image motion. At this point it

is necessary to include the nonlinear effect of charge

saturation and charge transfer efficiency (CTE) in the

simulation. We model saturation of a pixel as a pro-

cess that conserves charge, but distributes it along

the column containing the saturated pixel evenly in

both directions. The former effect is supported by

experiments performed with the Kepler Tech Demo

and with HST (43). For the present purposes, it is not

important to have a model for saturation that is real-

istic in all details. It is sufficient to have a model that

is indicative of the difficulties pixel saturation may

pose. Saturation will only affect a small handful of

target stars in any event.

In ETEM, after the effects described in §14.2 are

accounted for, a set of images is generated over a

grid of offsets, much as for the calculation of the

original pixel polynomials. For these images, pixels

that exceed the specified CCD well depth are itera-

tively spilled up and down their columns until no pix-

els are saturated. The imperfect CTE is modeled at

this point by noting that it can be expressed as a lin-

ear infinite impulse response (IIR) digital filter. Let

b*n be the pixel value read out from the CDD includ-

ing the effects of CTE, and let �bn 
 bn+1 
 bn+2 
 � � �� be

the pixel values in sequence of readout starting with

pixel n before including the effects of CTE. We can

express b*n in terms of the �bn 
 bn+1 
 bn+2 
 � � �� as

b*n = � bn + (1 − �) bn+1 + (1 − �)2 bn+1 + � � � 
 (14.3)

where � is the fraction of charge in a pixel that is suc-

cessfully clocked to the next row for a single clock

cycle. Although the effective CTE filter is IIR, a typ-

ical value for � is 0.9996, so that (1 − �)m becomes

insignificant for m
�

8. The CTE filter is convolved

with each column of the images for the parallel read-

out and with each row for the serial readout.

New CCD pixel polynomials are fitted to the set

of images and the fitting residuals are examined

for poorly behaved residuals. Saturated pixels and

neighboring pixels that accept spilled charge are typ-

ically flagged, and the spill of saturated charge and

CTE are modeled directly for these pixels and their

neighbors. All other pixels’ behavior is well repre-

sented by the new polynomials, c*CCD, since all the

transformations, including the effect of CTE, are lin-

ear transformations of the original polynomials. At

this point, ETEM is ready to generate synthetic pho-

tometric data for a specified run.

14.3 Running ETEM

This section describes the steps performed to gen-

erate synthetic CCD data once the development of

the polynomial representation for the CCD response

to motion is complete. To generate synthetic CCD

data, ETEM evaluates the polynomial c*CCD, simulat-

ing spill of saturated charge and CTE for flagged pix-

els. Shot noise and read noise are added to the pixels,

along with charge from cosmic ray events, if desired.

The results are digitized, and are then written to disk

and the process is repeated until the run is complete.

There are two modes of operation for ETEM with

respect to the generation of synthetic data, and these

relate to operational constraints for Kepler.

To prevent saturation of target stars, the expo-

sure time for the photometer is �3 seconds, so that

each day approximately 29,000 images are acquired.

There is not enough memory on the Solid State

Recorder (SSR) onboard Kepler to keep all this data,

so two lossy compression techniques are used to re-

duce the size of the data set. The first technique is to

co-add the images for 15 minutes, reducing the total

number of images stored on the SSR per day to 96.

For the second technique only the pixels of interest

are stored: those containing target stars and collat-

eral pixels used to correct for CCD artifacts and other

systematic errors, such as sky background, dark cur-

rent and smear from shutterless operation. So, too,

for ETEM there is no reason to generate data for pix-

els that won’t be analyzed later. An analysis mod-

ule examines the pixel content for each target star
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and determines the optimal photometric aperture in

a similar manner to that described in Jenkins et al.

(64).

The two modes relate to the generation of 15-

minute frames, or long cadences, onboard Kepler. In

the first mode, individual readouts are generated ex-

plicitly by evaluating c*CCD, adding stochastic noise

and digitizing the results. These are co-added until

the appropriate number have been summed to form

a long cadence, then the results are written to disk.

This mode is useful in examining phenomena that

operate on timescales shorter than 15 minutes, such

as analyzing the ability of Kepler to identify and deal

with cosmic rays. The other mode of operation is to

evaluate c*CCD for an entire 15-minute interval, called

the long cadence mode, add all the stochastic noise

corresponding to that interval, and to model the ef-

fects of quantization by adding additional random

deviates which are drawn from an appropriate dis-

tribution. For long runs of ETEM, the long cadence

mode is preferred as it is �300 times less computa-

tionally intensive than the first.

The long cadence mode is enabled by the polyno-

mial representation itself and the fact that the noise

on a 15-minute frame can be analytically related to

that at the single exposure level. Consider the pro-

cess of co-adding a sequence of noise-free CCD im-

ages generated by evaluating c*CCD. Let bn be a

sequence of noise-free CCD frames constructed by

evaluating polynomial c*CCD. For example, suppose

we wish to bin the results by a factor of three, yield-

ing b̃n. This process can be written as

b̃ = BA jit c*CCD 
 (14.4)

where B implements the binning operation and is

given by

B =

ª«««¬ 1 1 1 0 0 0 � � � 0 0 0

0 0 0 1 1 1 � � � 0 0 0
...

. . .
...

0 0 0 0 0 0 � � � 1 1 1

®®®̄�
(14.5)

Note that the associative property of matrix multipli-

cation implies that A jit can be pre-multiplied by the

binning matrix B before it is multiplied by c*CCD. A

significant reduction in processing time for the 15-

minute mode is achieved relative to the single expo-

sure mode by forming �A jit = BA jit , and hence, bin-

ning the jitter matrix prior to evaluating c*CCD.

Whether or not ETEM is operating in the single

exposure mode, once c*CCD is evaluated, it is time to

add shot noise and read noise. This is accomplished

by adding Gaussian noise of appropriate variance to

the noise-free polynomial values. In the long ca-

dence mode, the specified single-exposure read noise

is scaled by the square root of the number of expo-

sures in a 15-minute integration. At this point, syn-

thetic cosmic rays can be added to the images, if de-

sired.

14.3.1 Cosmic Ray Events

The cosmic ray flux environment has been of great

concern to almost all space missions with CCDs

since they are sensitive to cosmic rays. The actual

flux experienced by a device depends a great deal

on the exact orbit, that is, is the spacecraft in low

Earth orbit (LEO), or is it in deep space? The flux

also depends on the shielding and configuration of

the detectors within the spacecraft, which can affect

the generation of secondaries from primary events.

In any case, the Kepler Mission has adopted a flux

rate of 5 cm−2 s−1 based on previously flown mis-

sions in similar orbits, such as SOHO.

A study was conducted by BATC for Kepler to de-

rive the distribution of total charge deposited into a

CCD for each cosmic ray hit(83). The results are dis-

played in Fig. 14.5, which shows a mode of �2500

e−, little or no charge below �2000 e−, and a long

upper tail trailing out to at least 100,000 e−. We

note that 90% of events deposit less than 6,200 e−

into a CCD. To put this into perspective, note that an

mR=12 star occupies about 25 pixels, and that over

6.5 hours, about 4 �109 e− accumulates in its aper-

ture. The shot noise for such a star will be 63,245

e−. Now, 25 pixels receive a cosmic ray flux rate of

21.3 per 6.5 hr interval. To compare this to the effect

of uncorrected cosmic rays, we need to model the

distribution of charge from cosmic rays at the pixel

level.

To transform the distribution in Figure 14.5 to the
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Figure 14.5: The distribution of the total charge deposited into a Kepler CCD per cosmic ray event. This dis-

tribution resulted from modeling taking into account the expected cosmic ray environment for Kepler’s orbit,

and a detailed structural model for the spacecraft, the instrument, and any planned radiation shielding(83).

desired one, we applied the following assumptions:

1) The total charge deposited is uniformly distributed

over the path traveled by the cosmic ray as it tra-

verses the CCD slab. 2) The charge deposited by

the cosmic ray diffuses the same way as does charge

from actual photons. Given the geometry of the

CCDs (27 �m � 27 �m � 16 �m), we traced ran-

dom rays through a 13 by 13 pixel region of a CCD,

distributing the charge in each pixel encountered by

a ray according to the assumptions above. The CCD

pixels were divided into 13�13 sub-pixels for the

purposes of the numerical calculations. We amassed

a catalog of 6,097 cosmic ray trails, normalized so

that the sum of each trail was unity. Each trail, then,

can be scaled by a random deviate drawn from the to-

tal charge distribution to model the effect of a single

cosmic ray. A Monte Carlo experiment using this

model showed that the rms noise injected by cos-

mic rays in a 25-pixel aperture in a 6.5-hr interval is

21,171 e−, or about 5 ppm relative to the stellar flux.

This is not significant compared to the shot noise.

14.3.2 Digitization of the Synthetic, Noisy

CCD Frames

After the stochastic noise has been added to the syn-

thetic CCD frame, it can be digitized and either co-

added to the running sum, or written to disk, in the

long cadence mode. For this latter mode, the ef-

fect of quantization at the single exposure level can

be modeled by adding zero-mean, White Gaussian

Noise (WGN) with a standard deviation equal to3M G.312 where G is the gain in e−ADU−1, and

M is the number of co-adds. This does not accu-

rately model extremely dim pixels whose exposure-

to-exposure variations are less than 1 ADU, but these

do not occur in target star pixels. In this mode, the fi-

nal step is to normalize the pixel values by the gain to

convert the scale to ADU from e−. In the single expo-

sure mode, the digitization can be performed explic-

itly. Note that for the single exposure mode, there is

the opportunity to include the effects of nonlineari-

ties in the analog signal processing chain before the

quantization.

Figure 14.6 displays the average 15-minute frame

for one run of ETEM, while Fig. 14.7 displays a sin-
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gle, 2.88 s exposure where only the pixels of interest

have been calculated. The effects of the shutterless

readout are evident as vertical streaks. In ETEM, the

long cadence pixels of interest are written to disk and

then subjected to analysis to determine the CDPP. By

comparing the results of separate runs with individ-

ual noise sources toggled on and then off, it is pos-

sible to assess their contribution to the total CDPP

budget.
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Figure 14.6: Synthetic accumulated CCD frame for Kepler. The image is the mean 15-minute frame for a

synthetic stellar population generated by ETEM, clipped to 1% of the full range. Approximately 1 � 106

stars are simulated.

Figure 14.7: An image representing a single 2.88-s exposure generated during one run of ETEM, clipped to

0.5% of the full range. For efficiency, only pixels for those stars selected for study are calculated during the

run, along with collateral pixels allowing for estimation and removal of dark current and shutterless smear.



Appendix A

Acronym List

Acronym Definition

ADC Analog to Digital Converter

ADCS Attitude Determination and Control System

ADU Analog Data Unit

AR Auto-Regressive

ATBD Algorithm Theoretical Basis Document

BATC Ball Aerospace Technologies Corporation

CCD Charge Coupled Device

FOV Field Of View

CCDF Complementary Cumulative Distribution Function

CDPP Combined Differential Photometric Precision

CEGP Close-in Extrasolar Giant Planet

CSR Concept Study Report

CTE Charge Transfer Efficiency

DEC Detection and Error Coding

Dec Declination

DIA Difference Image Analysis

DMC Data Management Center

DSMS Deep Space Mission System

DSN Deep Space Network

ETEM End-To-End Model

FFI Full Field Image

FOP Follow-up Observations Program

FS Flight Segment

FWHM Full Width Half Max

GA Genetic Algorithm

HAO High Altitude Observatory

HST Hubble Space Telescope

JFIF JPEG File Interchange Format

JPEG Joint Photographic Experts Group
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Acronym Definition (continued)

KMS Kepler Mission System

KTD Kepler Technology Demonstration

MATLAB MATrix LABoratory

MOC Mission Operations Center

OWT Overcomplete Wavelet Transform

PoI Pixel of Interest

PDF Probability Density Function

PSD Power Spectral Density

PSF Point Spread Function

RA Right Ascension

RMS Root Mean Square

RSS Root Sum Square

SCP Stellar Classification Program

SO Science Office

SOC Science Operations Center

SNR Signal to Noise Ratio

SSR Solid State Recorder

STScI Space Telescope Science Institute

SVD Singular Value Decomposition

QE Quantum Efficiency

WFPC Wide Field Planetary Camera (HST)

WGN White Gaussian Noise
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Kepler SOC Algorithm List

0.

Algorithm Title: Example

Function: Summarizes the key features of the algorithm and what the input/output relationship is for the

data that is processed by this algorithm.

Heritage: Describes any relevant precursors to the algorithm that were used as a theoretical basis for

algorithms envisioned for use on the Kepler mission.

Description: Provides a pointer to the literature for a relevant paper describing the algorithm or further

describes its functionality.

1.

Algorithm Title: Optimal Pixel Weighting

Function: The algorithm optimizes (in a least-squares sense) the weights for each pixel in the photometric

aperture of a star in order to minimize the effect of image motion on the resulting summed aperture flux.

Heritage: Kepler Tech Demo

Description: See Jenkins, J. et al. 2000, ‘Processing CCD Images to Detect Transits of Earth-sized Planets:

Maximizing Sensitivity while Achieving Reasonable Downlink Requirements,’ SPIE Conference 4013, p.

520.

2.

Algorithm Title: Pixel Mask Selection

Function: The algorithm selects a set of pixels around each star on which weighted aperture photometry is

done. The pixels are selected by choosing only those that add information to the flux estimate.

Heritage: Kepler Tech Demo

Description: See Jenkins, J. et al. 2000, ‘Processing CCD Images to Detect Transits of Earth-sized Planets:

Maximizing Sensitivity while Achieving Reasonable Downlink Requirements,’ SPIE Conference 4013, p.

520, and references therein.

3.

Algorithm Title: Ensemble Star Selection

Function: The algorithm selects a set of stars to be used for the ensemble average for normalizing a

given target star. Dividing a target star’s flux by the flux of an appropriately chosen ensemble removes

common-mode noise.

125
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Heritage: Vulcan

Description: Details of the ensemble selection are not yet known. Several methods have been used for

Vulcan. At it simplest, all stars that were read out through the same CCD amplifier could be used as the

ensemble for a given target. Some effort will likely be made to eliminate those that are known to vary,

either intrinsically, or as a result of their location on the focal plane.

4.

Algorithm Title: Relative Flux Decorrelation

Function: The algorithm removes flux changes that are correlated over many stars. The ensemble average

can remove only common-mode signals (e.g., all stars increase in brightness), whereas the decorrelation

algorithm removes and signals that affect multiple stars on the same time scale, e.g., image motion, which

may cause some stars to increase in brightness and others to decrease.

Heritage: Kepler Tech Demo, Vulcan

Description: See Jenkins, J. et al. 2000, ‘Processing CCD Images to Detect Transits of Earth-sized Planets:

Maximizing Sensitivity while Achieving Reasonable Downlink Requirements,’ SPIE Conference 4013, p.

520.

5.

Algorithm Title: Adaptive Matched Filter

Function: The algorithm first ‘whitens’ the noise in relative-flux light curves. It uses the existing noise

structure to detrend light curves and can adapt to non-stationary noise distributions. It then searches

the whitened data for a predefined ‘matched’ test signal Ða planet transit. The algorithm returns the

single-event statistics for each target star.

Heritage: Numerical simulations

Description: See, e.g., Jenkins, J. 2002, ‘The Impact of Solar-like Variability on the Detectability of

Transiting Terrestrial Planets,’ Astrophysical Journal, 575, p 493; Van Trees, H. L. 1968, ‘Detection,

Estimation, and Modulation Theory, Pt. 1,’ (New York: Wiley & Sons).

6.

Algorithm Title: Multiple-Event Statistics (Foldvec)

Function: The algorithm folds the single-event statistics output from the adaptive matched filter over a

range of periods searching for the maximum multiple-event statistic. The algorithm returns the period,

phase, and S/N of the maximum detected signal for each target star.

Heritage: Vulcan

Description: The single-event statistics are folded over the range of periods for which planets are being

searched. The step size in period is such that the correlation between the test signal for two tests, at P and

P+DP, is a specified amount, e.g., 0.75. The step size is therefore dependent on the period and duration

of the transit. The maximum signal at each period is checked to see if it exceeds the current maximum

value for the tests up to that point. At the end of the run, the period, phase and S/N of the maximum

multiple-event signal is returned.

7.

Algorithm Title: Transit Confidence Estimation

Function: The algorithm estimates the significance of a detected multiple-event transit signal given the noise

distribution in the light curve being examined and the effective number of independent tests performed

during the transit search. The result of the algorithm is an estimate of how likely it is that a signal as high
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as the one observed would occur by sampling the light curve randomly the appropriate number of times.

Heritage: Numerical simulations, Vulcan

Description: See, Jenkins, J., et al. 2002, ‘Some Tests to Establish Confidence in Planets Discovered by

Transit Photometry,’ Astrophysical Journal, 564, p 495.

8.

Algorithm Title: Quick-look Data Quality Check

Function: The algorithm will be used at the Mission Operations Center to do quick-look testing of the data

coming down from the spacecraft.

Heritage: Vulcan

Description: The specific checks to be performed have yet to be determined. They will likely include such

things as image motion, focus, and large-scale variability for a specified set of test stars.

9.

Algorithm Title: Bias Correction

Function: The algorithm estimates and subtracts the CCD amplifier bias signal. Bias estimation and

removal will be done at the DMC.

Heritage: Vulcan, Kepler Tech Demo, standard in CCD photometry

Description: A low-noise bias is estimated by over-scanning the readout amplifier by a number of rows.

This estimate may be further filtered. The details of the estimator and filtering will likely be determined

base on flight hardware performance.

10.

Algorithm Title: Non-linearity Correction

Function: The algorithm corrects for the non-linear response of the CCDs. Non-linearity correction will be

done at the DMC.

Heritage: Kepler Tech Demo, Vulcan, standard in CCD photometry underlineDescription: The non-linear

response of the CCDs is corrected after the bias is removed, likely by a simple table look-up. The details of

the correction will be determined by measuring the response of the flight CCDs.

11.

Algorithm Title: Shutterless Readout Correction

Function: The algorithm corrects for the smear caused by shutterless readout of the CCDs. Smear correction

will be done at the DMC.

Heritage: Kepler Tech Demo

Description: An un-illuminated region at the end of each CCD column is used to estimate the flux that

is smeared into each pixel of a given column. See Jenkins, J. et al. 2000, ‘Processing CCD Images to

Detect Transits of Earth-sized Planets: Maximizing Sensitivity while Achieving Reasonable Downlink

Requirements,’ SPIE Conference 4013, p. 520.

12.

Algorithm Title: Background Estimation

Function: The algorithm estimates the contribution from background sources (zodiacal light, psf-wings

from other stars) to the flux in the aperture of each target star. A robust estimate of the background is

needed to accurately assess the characteristics of a given detection.

Heritage: Vulcan, Kepler Tech Demo, standard CCD processing
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Description: The background flux for Kepler will primarily come from three(?) sources: zodiacal light,

the wings of the point-spread-functions from other stars, and light scattered within the photometer. The

background contribution from zodiacal light will vary with the orbital position of the spacecraft and should

be largely independent of position within the field-of-view. The background from scattered light and other

stars will depend on position on the focal plane and will have to be measured. By looking at the distribution

of pixel brightness we can make a robust estimate of the background level. Several methods can be used,

from the simple median, to a function fit to the distribution.

13.

Algorithm Title: Star Centroid

Function: The algorithm determines the centroid of the distribution of a star’s flux.

Heritage: Kepler Tech Demo, Vulcan, standard stellar photometry

Description: A variety of methods are available from fitting the individual flux distributions, to a full-image

model, depending on the positional accuracy needed.
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FORTRAN Listing for Folding Single Event

Statistics

This section contains a listing of a FORTRAN subroutine used to fold single event statistics that returns the

maximum statistic observed for each trial period. The inputs are the single event correlations, the single

event energies, the minimum period and the maximum period.

subroutine maxfoldvecm(lmax,jmax,a_mat,anorm_mat,size,minfold,maxfold)

integer size, minfold, maxfold

real*8 lmax(*), a_mat(*), anorm_mat(*), jmax(*)

real*8 li,lnormi

integer i,ii,j,k,ni

do i=1,size

anorm_mat(i)=anorm_mat(i)*anorm_mat(i)

enddo

istart=0

do i=minfold,maxfold

ii=i-minfold+1

lmax(ii)=-1.d99

jmax(ii)=1.d0

ni=int(size/i)

do j=1,i

li=0.d0

lnormi=0.d0

k=j

ni=int(size/i)

do while (k .le. size)

li = li + a_mat(k)

lnormi = lnormi + anorm_mat(k)

k=k+i

enddo

li = li/sqrt(lnormi)

if(li.gt.lmax(ii)) then

lmax(ii)=li
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jmax(ii)=float(j)

endif

enddo

enddo

do i=1,size

anorm_mat(i)=sqrt(anorm_mat(i))

enddo

return

end
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Summary of FORTRAN codes used for

DIA.

To provide more explicit guidance in how DIA has been used for analysis of HST time-series photometric images, this

appendix provides a rough “User’s Guide" to the several codes I use. All codes are available for reference, although

these are “research level" and thus poorly documented, with obsolete sections, and other limitations.

I’ve broken the overall outline into three distinct stages: (1) production of a good mean over-sampled image, (2)

difference image creation. In practice these stages are distinct only in the sense that I create an over-sampled image

early, then don’t update it. Most of the work needed to create an over-sampled image has to be repeated in getting

properly set up to create difference images. (3) Extracting stellar photometry values from the difference images and

massaging these.

The flow here is a bit awkward in the sense that I’ve layered on new steps as needed over the years. A rewrite of

the codes would almost certainly result in some modifications to the flow. (If I were starting over in a coherent way

some whole codes might go away.)

(1) Initial processing, and production of first over-sampled image.

make.savef

-- Startup routine that takes the calibrated, multi-group images

from the archive (after conversion from fits to .c0h and .c0d

format) and writes out in 4 separate image streams with 90

degree rotations, application of delta-dark corrections,

scaling by gain to yield e- units and storage as i*2.

(This step is certainly unique to the HST data.)

make.codep

-- Derives initial estimate of x,y offsets of each frame using PSF

fitting to a few stars. Used only once at beginning on full set

of frames. (Likely to not be needed for Kepler data, or done

differently. An initial guess for offsets will be needed.)

make.skysub

-- Derives a global sky zero point for each frame. Used only once

at beginning.
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Actually this is now used again after setting up the difference

images to define the frame to frame sky changes (rather small

in general compared to the constant background provided by the

crowded field).

make.craye

-- THE primary code for flagging cosmic rays and developing a polynomial

fit based model of the stellar scene. Largest and most important routine.

Requires iteration with other routines.

make.image

-- Used only for ’visualization’ of the craye stacking result, derives

a X2 oversampled average image of sky via evaluation of analytic

expansions.

(Note: I tend to use "sky" to mean two different things. Last it

meant the distribution of light corresponding to the stellar scene.

Sometimes it will mean a uniform background.)

make.fitpos1dr

-- Used to refine estimate of x,y offsets, and rotation if desired

by fitting for optimal shift

of over-sampled image required for best fit to all individual frames.

Requires iteration.

make.fitposps

-- Used to include variation of plate scale in the registration model.

make.imgset4

-- Used to define the final X4 over-sampled average image by second stacking

process. Used only once at end.

This is the approach discussed in the Gilliland, Nugent, and Phillips

(1999) paper.

The 47 Tuc data is so extensive that each pixel can be forced to use

all of the terms in the bi-cubic Intensity = f(x,y) expansion, even in

regions of low signal. Therefore the direct over-sampled image model

can be used to define the over-sampled image.

Some of the above steps require iteration. The following might be illustrative

of a full set of runs:

0) savef reformat frames, done only once

1) codep provides initial registration guess

2) skysub provides " sky background guess

3) craye derive first over-sampled model fit, presumably setting

threshold for cosmic ray elimination high

4) fitpos1dr derive x,y zero point offsets and rotation for each frame

5) fitposps derive plate scale variations for each frame
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6) craye repeat over-sampled model with improved registration input

7) fitpos1dr rederive registration

8) fitposps rederive registration

9) craye form new over-sampled model with updated registration

[There is no well defined stopping point, can watch how much the

registration coeff change, and if stable stop or do another cycle.]

10) imgset4 evaluate over-sampled mean image for DAOPHOT analysis and

star list definition

(2) Setting up the difference images. This section discusses new codes

developed over the course of analyzing the 47 Tuc data and updated

for the current (2004) analysis of bulge data with HST/ACS.

make.cntcry

-- Evaluates statistics on number of cosmic ray hits attributed to

pixels on sky and on stars respectively. Provides a vector that

can be used in future craye runs that raises the threshold for

cosmic ray elimination for frames having too many rejected

points on stars.

make.fitposxy25

-- This solves for a delta to the registration model (each individual

frame against the current over-sampled model) by evaluating zero point

x,y offsets over a 5x5 grid of areas for each frames. Then these are

fit with quadratics and cubics in x,y for later use.

make.fitpsf25

-- This solves for a PSF at each of 5x5 areas over frames such that

convolution of this PSF onto the over-sampled model image best represents

each individual frame. This is the fundamentally new step developed to

take into account focus variations frame-to-frame. The PSF is solved for

in X2 over-sampled space on a 7x7 grid via brute force least squares

iteration. This step probably requires 2/3rds of the overall processing

time (but doesn’t require a large memory machine).

make.difcon

-- This produces a "differential PSF image" (I’m not sure what terminology

to really use) that is the difference for each frame of the model

image convolved with the focus differential PSF and the model image

simply evaluated at the position of each individual frame. If there

were no frame-to-frame focus changes, then these frames would be zero.

This isolates the changes at a given pixel due to focus changes relative

to the mean value. These differential images are then used in cycling

through the basic codes that build up both registrations and over-sampled

models.
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make.submodc

-- Using all of the registration information, information on frame-to-frame

focus changes, and the over-sampled model the best model representation

for each frame is subtracted from the frame. This produces the difference

images.

Assuming that all of the steps in block (1) have been completed I have adopted

the following as the overall iteration steps for the 47 Tuc analyses:

1) fitposxy25 evaluate higher order registration model terms

2) fitpsf25 evaluate the differential PSF for focus tracking

3) difcon set up frame set that isolates effects of focus changes

4) submodc create first set of decent difference images

5) skysub using difference images evaluate frame-to-frame background

change of sky

6) cntcry analyze cosmic ray stats, adjust elimination threshold

7) craye evaluate model image with first use of focus compensation

8) fitposxy25 reset registration using focus knowledge

9) fitpsf25 reset differential PSFs

10) difcon reset differential PSF image frames

11) submodc new setting of diff images, just for verification

12) skysub verification step -- should be nulled out pretty well

13) cntcry analyze cosmic ray stats, adjust elimination threshold

14) craye iterate model evaluation

15) fitposxy25 iterate registration

16) fitpsf25 iterate PSF solution

17) difcon new setting of diff PSF images

18) craye final run of this -- turn on cosmic ray growth

19) fitposxy25 final tweak of registration

20) fitpsf25 final tweak of PSFs

21) difcon final setting of differential PSF images

22) submodc final production of difference images

[As with the first block the precise point at which to stop is

not well defined, but watching the level of changes on successive

updates to registration and differential PSF kernal changes

suggested the above as reasonable.]

(3) Intensity extractions over the full set of stars.

make.aperset

-- This is simply a tool used to analyze aspects of the star list

as provided by DAOPHOT run on the over-sampled image. Allows

estimation of contamination from neighbors. Imposes cuts in

magnitude and color, staying away from edges, bad pixels, etc.

[This should not be required for Kepler data.]

make.sortcon
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-- Simply used to reorder and reformat output from aperset, ordered

in terms of increasing level of contamination.

[This may not be needed for Kepler data.]

make.drpstr

-- Applies further cuts on the star list based on proximity to

saturated pixels, vignetted regions etc.

[Again, not likely needed for Kepler since cuts on stars to be

followed should have been done in setting up the observations.]

make.diffit

-- This is the code that makes use of the star list positions and

performs both aperture and PSF fitting photometric extractions for

intensity differences on the full set of difference images.

[A current known weakness, maybe not very important, is that the

PSF is not carefully developed at the position of each star.

This would be a disaster if fitting to direct images, not very

important in difference images.]

make.psfdecrpcv

-- This code takes the intensity extractions for N stars on M

frames and does some cleaning on the time series, e.g., enforces

constancy of an ensemble mean and deprojects intensity changes

versus a linear fit to x,y variation history. Output of this is

ostensibly the final set of relative time series.

[I would expect the SOC to adopt their own approach to this.]

Assuming that things work right there isn’t any iteration of steps in

this 3rd block.

If actually adopting my codes for test purposes on existing HST data

it would be advisable to have further notes detailing the parameters

and files that need to be managed during the analyses.



Appendix E

Proof that the Distribution of Observation

Noise Does Not Affect the Value of the

Number of Independent Tests

Here we sketch a proof that the value for NEIT does not depend on the noise distribution assumed for

the observations. As discussed in the text, the distribution of the individual detection statistics may well

be Gaussian even if the observation noise is not. For the purposes of the proof we will assume that the

detection statistic, l, is a function of an N(0,1) process, x. Moreover, let us restrict l to be a zero–mean,

unit variance random variable. Let l = h(x) establish the relationship between x and l and let h(x) be strictly

monotonic increasing: h(x1) + h(x2) iff x1 + x2. This does not limit the variety of noise distributions that

can be considered as a function h can always be found relating two given distributions (88). An example is

h(x) = x3.315, whose corresponding density possesses extremely long tails in comparison with an N(0,1)

process. Indeed, even the sum of 100 independent samples has significant tails compared to an N(0,1)

process. Now, the properties of h(x) imply that

Fl(y) = P�l 0 y� = P�x 0 h−1(y)� = Fx(h−1(y))� (E.1)

Thus, there is a clear functional relationship between the distribution of x and the distribution of l. Ad-

ditionally, this functional relationship carries over to the maximum detection statistic over a given search,

lmax = maxi�li� and the maximum of the corresponding Gaussian deviates, xmax = maxi�xi� : lmax = h(xmax).

Hence, Flmax(y) = Fxmax (h
−1(y)). Let NEIT be the effective number of independent tests performed in searching

for transiting planets for the Gaussian detection statistics �x�:

Fxmax (x) = NFA.Nstars Z 1 − Fx(x)NEIT (E.2)

near x = x0. But x = h−1(y) for some real number, y. So

Fxmax (x) = Fxmax (h
−1(y)) = F lmax (y) 
 (E.3)

and

Fx(x)NEIT = Fx(h−1(y))NEIT = Fl(y)NEIT � (E.4)

Thus, F lmax (y) Z 1 − Fl(y)NEIT near y = h(x0) = y0. Therefore, the distribution of lmax can be approximated by

the distribution obtained from the process of choosing the maximum of NEIT draws from the distribution of

l in the region of interest, i. e., near F lmax = NFA.Nstars, which is the desired result.
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Appendix F

FORTRAN Listing for Confidence Level

Assessment

program runcountlmult

c Reads in file containing unnormalized single event statistics,

c l1, the energy of each statistic E1 used to normalize multiple

c event statistics c the specifications for the output histogram,

c xmin, xmax and dx, and the c number of trials to run, ktrials,

c and the number of transits in each c event to be computed,

c ntrans

integer NMAX,skip,CNTMAX

real thresh

parameter (NMAX=200000,skip=99,CNTMAX=4,thresh=6.)

integer ktrials,nevents,ntrans

real*4 xmin,xmax,dx,l1(NMAX),E1(NMAX)

real*4 ltot,Etot,detstati,olddetstati,lmax

character*20 outfile

!integer idum, iran

integer nhist,ihist

real*8 hist(NMAX)

!real*4 ran2

integer ihiststat

integer counter(CNTMAX),fact(CNTMAX),naddi,nadd

integer oldcounter(CNTMAX)

logical ex

integer i,j

c declarations for keeping track of state of ran2

integer NTAB

parameter(NTAB=32)

integer idum2,iy,iv(NTAB)

common /ran2blk/ idum2,iy,iv
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c Begin program

c initialize fact

fact(1)=1

do i=2,CNTMAX

fact(i)=i*fact(i-1)

enddo

!call readseed(idum2,iy,iv,idum)

c open and read in setup.txt

call readsetup(ktrials,xmin,xmax,dx,outfile,ntrans,nevents,

. l1,E1)

!print *,’ktrials=’,ktrials

c determine number of output histogram bins

nhist=(xmax-xmin)/dx+1

c initialize hist bins to 0

do i=1,nhist

hist(i)=0.

enddo

c check to see if the output file already exists

c if it does, read it in and initialize hist to the

c existing values, else set counter to [1,1,1,0]

inquire(file=outfile, exist=ex)

if (ex) then

call readoutput(outfile,hist,nhist,counter,ntrans)

else

do i=1,ntrans-1

counter(i)=1

enddo

counter(ntrans)=0

endif

print *,’xmin’,xmin,’xmax’,xmax

print *,’nevents’,nevents

c Start loop

detstati=10.

lmax=-10.

i=0

do while (counter(1).lt.nevents)

i=i+1

olddetstati=detstati

do j=1,ntrans

oldcounter(j)=counter(j)

enddo

call incrcounter(counter,ntrans,nevents)

naddi=nadd(counter,ntrans,fact)
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!print *,’[’,(counter(j),j=1,ntrans),’]’;pause

!print *,’naddi=’,naddi

!pause

ltot=0.

Etot=0.

do j=1,ntrans

ltot=ltot+l1(counter(j))

Etot=Etot+E1(counter(j))

enddo

detstati=ltot/sqrt(Etot)

ihist=ihiststat(detstati,xmin,xmax,dx)

hist(ihist)=hist(ihist)+naddi

!lmax=max(lmax,detstati)

if ((i/1000000)*1000000-i.eq.0) then

print *,i/1000000,detstati,

. ’[’,(counter(j),j=1,ntrans),’] naddi=’,naddi

lmax=-10.

endif

if ((i/10000000)*10000000-i.eq.0) then

call writeoutput(outfile,hist,nhist,xmin,dx,counter,ntrans)

!call writeseed(idum2,iy,iv,idum)

endif

!if(olddetstati.lt.6.and.detstati.lt.6..and.

c . counter(2).gt.1) then

! print *,i,’l=’,detstati,’

c . cnt=[’,(counter(j),j=1,ntrans),’]’

!endif

if(detstati.ge.6.)

. counter(ntrans)=counter(ntrans)+skip

if (detstati.lt.thresh) then

j=2

do while(j.le.ntrans)

if(oldcounter(j).eq.nevents) counter(j-1)=nevents

j=j+1

enddo

if(detstati.lt.6.) counter(ntrans)=nevents

endif

enddo !i

call writeoutput(outfile,hist,nhist,xmin,dx,counter,ntrans)

c call writeseed(idum2,iy,iv,idum)

end

c declarations for keeping track of state of ran2

block data
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integer NTAB

parameter(NTAB=32)

integer idum2,iy,iv(NTAB)

common /ran2blk/ idum2,iy,iv

DATA idum2/123456789/, iv/NTAB*0/, iy/0/

end

c**********************************************************************

subroutine writeoutput(outfile,hist,nhist,xmin,dx,counter,ntrans)

character*20 outfile

integer nhist,counter(ntrans),ntrans

real*8 hist(nhist)

integer i

real xmin, dx, xi

open(unit=50,file=outfile,form=’formatted’,status=’unknown’)

xi=xmin-dx

do i=1,nhist

xi=xi+dx

write(50,*) xi,hist(i)

enddo

close(50)

open(unit=50,file=’counter.txt’,form=’formatted’,

. status=’unknown’)

write(50,*) (counter(i),i=1,ntrans)

print *,(counter(i),i=1,ntrans)

close(50)

return

end

c**********************************************************************

subroutine readoutput(outfile,hist,nhist,counter,ntrans)

character*20 outfile

integer nhist,counter(4)

real*8 hist(nhist)

integer i

real xi

open(unit=50, file=outfile, form=’formatted’, status=’old’)

do i=1,nhist

read(50,*) xi,hist(i)

enddo

close(50)
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open(unit=50, file=’counter.txt’, form=’formatted’, status=’old’)

read(50,*) (counter(i),i=1,ntrans)

close(50)

return

end

c**********************************************************************

subroutine readsetup(ktrials,xmin,xmax,dx,outfile,ntrans,nevents

. ,l1,E1)

integer ktrials,ntrans,nevents,NMAX

parameter (NMAX=200000)

real*4 xmin,xmax,dx,l1(NMAX),E1(NMAX)

character*10 fname

character*20 outfile,eventfile

logical ex

c This subroutine reads in run parameters for runbootseg

fname=’setup.txt’

inquire(file=fname, exist=ex)

if (.not. ex) then

print *, ’File SETUP.TXT does not exist!’

pause

stop

else

open(unit=50, file=fname, form=’formatted’, status=’old’)

read(50, *) ktrials

read(50, *) xmin

read(50, *) xmax

read(50, *) dx

read(50, *) outfile

read(50, *) ntrans

read(50, *) eventfile

close(50)

endif

inquire(file=eventfile, exist=ex)

if (.not. ex) then

print *, ’File ’,eventfile,’ does not exist!’

pause

stop

endif

open(unit=50, file=eventfile, form=’formatted’, status=’old’)

nevents=0

98 continue

nevents=nevents+1

read(50, *,END=99) l1(nevents), E1(nevents)

goto 98

99 continue

close(50)
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return

end

c**********************************************************************

function ihiststat(detstati,xmin,xmax,dx)

integer ihiststat

real*4 detstati,xmin,xmax,dx

if (detstati.lt.xmin) detstati=xmin

if (detstati.gt.xmax) detstati=xmax

ihiststat=int((detstati-xmin)/dx+.5)+1

return

end

c**********************************************************************

FUNCTION ran2(idum)

INTEGER idum,IM1,IM2,IMM1,IA1,IA2,IQ1,IQ2,IR1,IR2,NTAB,NDIV

REAL ran2,AM,EPS,RNMX

PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1,

*IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,IR2=3791,

*NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS)

INTEGER idum2,j,k,iv(NTAB),iy

!SAVE iv,iy,idum2

common /ran2blk/ idum2,iy,iv

c DATA idum2/123456789/, iv/NTAB*0/, iy/0/

if (idum.le.0) then

idum=max(-idum,1)

idum2=idum

do 11 j=NTAB+8,1,-1

k=idum/IQ1

idum=IA1*(idum-k*IQ1)-k*IR1

if (idum.lt.0) idum=idum+IM1

if (j.le.NTAB) iv(j)=idum

11 continue

iy=iv(1)

endif

k=idum/IQ1

idum=IA1*(idum-k*IQ1)-k*IR1

if (idum.lt.0) idum=idum+IM1

k=idum2/IQ2

idum2=IA2*(idum2-k*IQ2)-k*IR2

if (idum2.lt.0) idum2=idum2+IM2

j=1+iy/NDIV

iy=iv(j)-idum2

iv(j)=idum

if(iy.lt.1)iy=iy+IMM1

ran2=min(AM*iy,RNMX)

return

END

c**********************************************************************
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subroutine readseed(idum2,iy,iv,idum)

c This subroutine reads in seed parameters for ran2

implicit none

logical ex

integer NTAB

parameter(NTAB=32)

integer idum,idum2,iy,iv(NTAB)

inquire(file=’seed.txt’, exist=ex)

if (ex) then

open(unit=50, file=’seed.txt’, form=’formatted’, status=’old’)

read(50, *) idum2

read(50, *) iy

read(50,*) iv

read(50, *) idum

else

idum=-1 ! initialize

endif

close(50)

return

end

c**********************************************************************

subroutine writeseed(idum2,iy,iv,idum)

c This subroutine writes out seed parameters for ran2

implicit none

integer NTAB

parameter(NTAB=32)

integer idum,idum2,iy,iv(NTAB)

open(unit=50,file=’seed.txt’,form=’formatted’,status=’unknown’)

write(50, *) idum2

write(50, *) iy

write(50,*) iv

write(50, *) idum

close(50)

return

end

c**********************************************************************

subroutine incrcounter(counter,ntrans,nevents)

integer counter(ntrans),ntrans,nevents

integer i,j

counter(ntrans)=counter(ntrans)+1

do i=ntrans,1,-1
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if (counter(i).gt.nevents) then

counter(i-1)=counter(i-1)+1

do j=i,ntrans

counter(j)=counter(i-1)

enddo

endif

enddo

do i=2,ntrans

if(counter(i).lt.counter(i-1)) counter(i)=counter(i-1)

enddo

return

end

c**********************************************************************

subroutine unique(vec,nvec,nuniq,nnuniq)

integer vec(nvec),nvec,nuniq(nvec),nnuniq

integer i,j,k

do i=1,nvec

nuniq(i)=0

enddo

i=1

j=1

k=1

do while(j.le.nvec)

if(vec(j).eq.vec(i)) then

nuniq(k)=nuniq(k)+1

j=j+1

else

k=k+1

i=j

endif

enddo

nnuniq=k

return

end

c**********************************************************************

function nadd(counter,ntrans,fact)

integer nadd,ntrans,nuniq(4),nnuniq,i,fact(ntrans)

integer counter(ntrans)

call unique(counter,ntrans,nuniq,nnuniq)

nadd=fact(ntrans)

i=1

do while(i.le.nnuniq)
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nadd=nadd/fact(nuniq(i))

i=i+1

enddo

return

end
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MATLAB Listing for the Wavelet-Based

Detector

function [l,lnorm]=qwavsearch(x,h0,tran,winlen)

% [l,lnorm]=qwavesearch(x,h0,tran,winlen)

if nargin<4, winlen=50; end

n=length(x);

n=2^floor(log2(n));

x=x(1:n)-median(x);

mtran=sum(tran~=0);

nh0=length(h0);

m=log2(n)-floor(log2(nh0))+1;

h1=flipud(h0).*(-1).^(0:nh0-1)’;

H0=fft(h0,n);

H1=fft(h1,n);

X=fft(x);

T=fft(tran,n);

l=0;

lnorm=0;

if n>2^14

h=waitbar(0,’Progress’);

end

k=winlen;

for i=1:m-1

% get wavelet coeffs at scale i for data and for transit pulse

Wxi=real(ifft(X.*H1));

Wtrani=real(ifft(T.*H1));
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X=X.*H0;

T=T.*H0;

H0=[H0(1:2:end);H0(1:2:end)];

H1=[H1(1:2:end);H1(1:2:end)];

k=min(k*2,n);

Wstd_2=circshift(movcircstd(Wxi,k),-k).^-2;

SNRi=circfilt(flipud(Wtrani.^2),Wstd_2);

lnorm=lnorm+SNRi/2^i;

Li=circfilt(flipud(Wtrani),Wxi.*Wstd_2);

l=l+Li/2^i;

if n>2^14

waitbar(i/m)

end

end

Wxi=real(ifft(X));

Wtrani=real(ifft(T));

k=min(n,winlen*2^(m+1));

Wstd_2=movcircstd(Wxi,k).^-2;

Li=circfilt(flipud(Wtrani),Wxi.*Wstd_2);

l=l+Li/2^(m-1);

l=circshift(l,-mtran);

SNRi=circfilt(flipud(Wtrani.^2),Wstd_2);

lnorm=lnorm+SNRi/2^(m-1);

lnorm=circshift(lnorm,-mtran);

lnorm=sqrt(lnorm);

if n>2^14

waitbar(1)

close(h)

end

return
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