

Hubble Legacy Archive (HLA) Status and Plans

Stefano Casertano

for the HLA Team

HLA Status and News

- New organizational presence
 - With the successful Senior Review last summer, HLA is now integrated in MAST
 - STScl renewing focus on Archives as an integral part of the Institute's mission
 - HLA-specific work will be coordinated with the HST Mission Office and the Instrument Teams
- Two major and one intermediate data releases:
 - DR 2 (September 2008):
 - DR 2.5 (December 2008): Contributed High Level Science Products fully integrated in HLA
 - DR 3 (May 2009): NICMOS images, ACS grisms, WFPC2 source lists, prototype mosaics
 - Numerous interface upgrades
 - New development environment and installation procedures:
 - Creation of a Linux Clustered Environment including a separate Development and Test area
 - Additional storage (100 TB), CPUs available
 - Setup similar to the OPUS environment
 - New software development progression (Dev -> Test -> Ops) used since DR2.5
- Strong presence at AAS; interactions with possible partners in both scientific and broader community
 - Partnerships with Chandra and Spitzer centers
 - Prototypes of enhanced footprint/overlay features using Google Sky, World Wide Telescope, FLEX (Flash-based) software tools

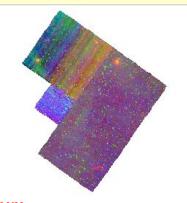
Overview of Data Release 2

- DR2 took place September 4, 2008
- Major data items:
 - WFPC2 images from CADC
 - Re-processed ACS from EDR
 - ACS DAOPHOT and Source Extractor for all usable ACS images.

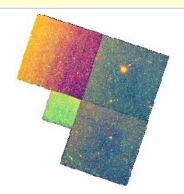
Interface and software improvements

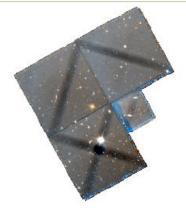
- Shopping Cart
- Overlays with SDSS, 2MASS, GSC2 and FIRST
- Enhanced Plotting Tool
- User-defined search list
- Search on prop ID, spectral element, or moving target

DR2 - WFPC2 Details


- WFPC2 Data looks very good
 - Zeropoints understood and match ground based to ~0.03 mag.
 - Photometry is at least good to RMS ~0.05.
 - RMS<0.01 mag for bright objects
 - RMS ~0.05 mag for faint objects
 - WFPC2 data has potential to be as accurate as ACS for relative photometry
- Accuracy needed by some researchers may require that they go back to original chip by chip data
 - Should be a relatively small percentage
 - HLA documentation provides information to allow users to make this decision.

MAST Users Group – July 9, 2009


NGC7793 (color) WFPC2 F656N/F547M PC1 08591_40 Interactive Display Download Data: Interactive Color (27.6 MB) Download Source Lists: None

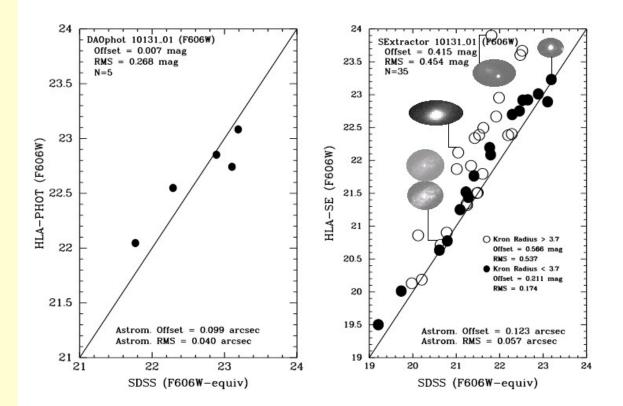

ANY (color) WFPC2 F814W/F439W/F336W WF2 10246_16 Interactive Display Download Data: IFITS-Color (53.0 MB) Download Source Lists: None

WFPC2 Images

- In general, the image quality of the ACS and WFPC2 looks similar (e.g., fraction of misalignments, absolute astrometry, etc.)
- The WF4 bias anomaly makes some images look strange
 - Affected images can have bias stripes, appearing as different levels (and thus quite apparent in color composites), and sources fainter than in the other chips
 - The WFPC2 pipeline reprocessing project has specific code for better processing of anomalous bias images; the new data will be ingested in the HLA later this year
- Other known anomalies include timedependent chip separation, which can make alignment difficult, and the crossed appearance due to earthshine
 - Some of these anomalies will also be improved with the new pipeline, others will not
- A comprehensive ISR describing known WFPC2 image anomalies is linked to our help page

M81-HALO-FIELD (color) WFPC2 F814W/F5555W/F336W WFALL 10136_01 Interactive Display Download Data: #/FITS-Color (43.6 MB) Download Source Lists: None

ANY (color) WFPC2 F814W/F555W WFALL-FIX 10227_02 Interactive Display Download Data: #FITS-Color (50.6 MB) Download Source Lists: None More...



ACS Source Lists - Comparison with SDSS

•DAOPHOT zeropoints look ok, although hard to be precise due to large RMS caused by SDSS.

•SExtractor zeropoints also ok. Concentrated objects (i.e., Kron radius < 3.5) match better than extended objects, as expected.

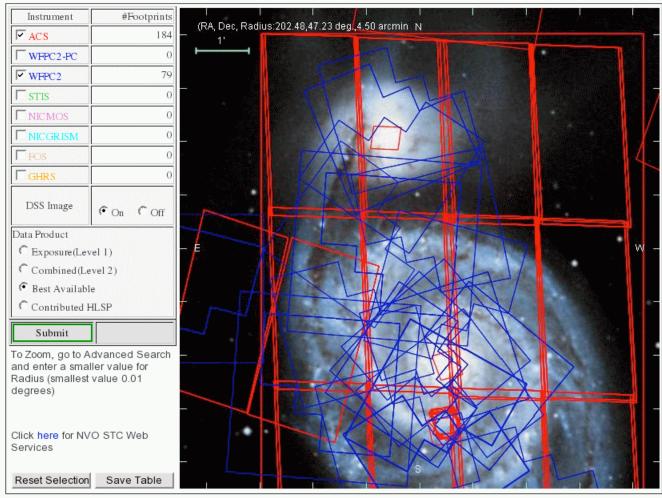
•Probably due to poorer ground based resolution (e.g., ground based cannot separate objects as well as HST)

Overview of Data Release 2.5

- DR2.5 took place on December 22, 2008
- Focus on the addition of Contributed Products
 - User-generated image combinations from the MAST High Level Science Products
 - Most delivered by Treasury and Archival Legacy programs
 - Over 4500 images, including ACS, WFPC2, and NICMOS
 - Functional quality verification; limited review of scientific accuracy
- High-quality but heterogeneous products required several changes behind the scenes
 - Enhancements to footprint, inventory services, default scaling for grayscale and color images
 - Database remains incomplete for some keywords
 - A small fraction of the data excluded from the delivery because of quality issues

DR2.5 – Other Changes

- Some minor changes were made to the HLA interface and procedures at the time of Data Release 2.5
 - Review and enhancements to help information and FAQ to support new products
 - Improved functionality based on user choices
 - Improved cross-functionality of Inventory and Footprint view
 - Small number of problems detected and corrected
 - New, streamlined deployment process to take advantage of Development and Test environments
 - Precomputed multi-resolution FITS data for faster loading, zooming, panning of large-format images

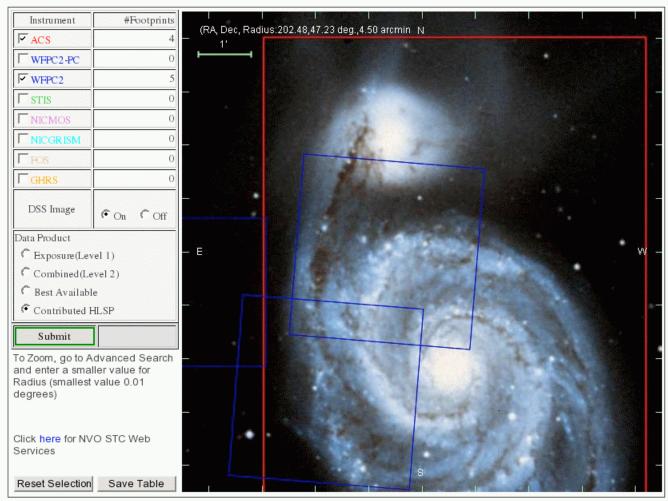

Table of Contributed Products

Project Name	PI	Instrument(s) ¹	Reference Position	Number of Products
ANGST (ACS Nearby Galaxy Survey)	Dalcanton	ACS	Multiple targets	114
COMA (ACS Treasury Survey of Coma Cluster of Galaxies)	Carter	ACS	12:59:49.45 27:55:21.1 1.2d	69
COSMOS (Cosmic Evolution Survey)	Scoville	ACS, WFPC2, NICMOS	10:00:27.85 02:12:03.5 1.0d	999
GEMS (Galaxy Evolution from Morphologies and SEDs)	Rix	ACS	03:32:30 -27:48:20 0.4d	187
GOODS (Great Observatories Origins Deep Survey)	Giavalisco	ACS	North: 12:36:55 62:14:15 0.3d South: 03:32:30 -27:48:20 0.3d	175
Hubble Heritage	Noll	ACS, WFPC2, NICMOS	Multiple targets	91
STAGES (Space Telescope A901/902 Galaxy Evolution Survey)	Gray	ACS	09:56:02.16 -10:05:20.5 0.4d	80
UDF (Ultra Deep Field)	Beckwith, Stiavelli, Thompson	ACS, WFPC2, NICMOS	03:32:29.45 -27:48:18.4 0.1d	20
APPP (Archive Pure Parallels Program)	Casertano	WFPC2	Multiple targets, all sky	2858
SGAL (Spiral Galaxies)	Holwerda	WFPC2	Multiple targets	96
Notes: 1. Only instruments for which HLSP data are availa	able through t	he HLA interface	are listed.	

MAST Users Group – July 9, 2009

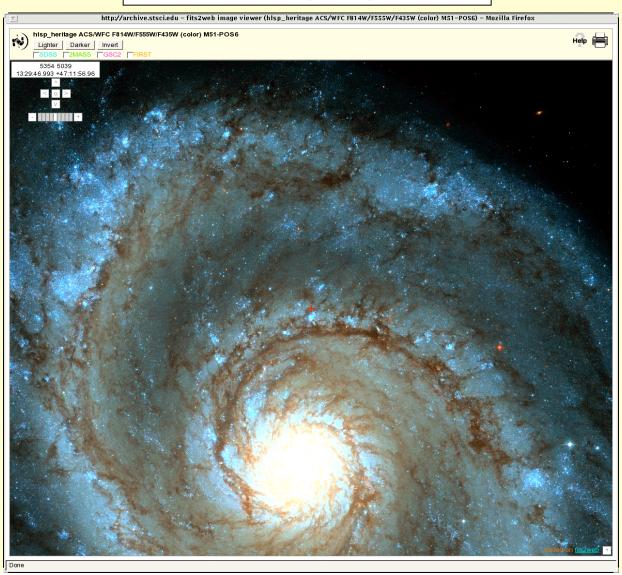
"Best Available" selection

M51 RA = 202.482194 Dec = 47.231509 r = 0.075000 [13:29:55.727 +47:13:53.43]



Footprint Science Table (image and table selected fields are sorted to beginning of table)

"Contributed Products" selection


M51 RA = 202.482194 Dec = 47.231509 r = 0.075000 [13:29:55.727 +47:13:53.43]

Footprint Science Table (image and table selected fields are sorted to beginning of table)

Example: Heritage image of M51

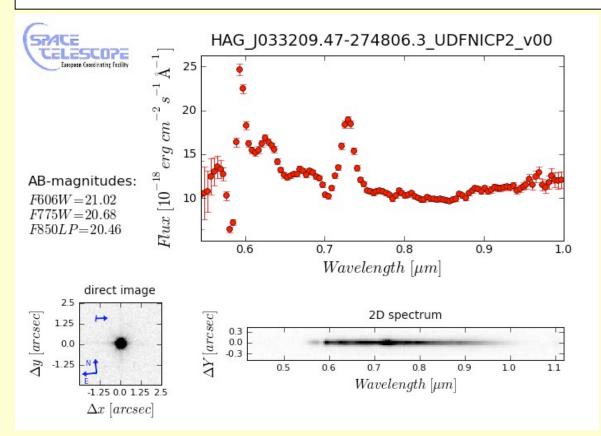
Overview of Data Release 3

- Released May 27, 2009
- New data content:
 - NICMOS reprocessed and visit-combined images
 - ACS Grism data processed by ST-ECF
 - WFPC2 source lists
 - Prototype ACS mosaics (multi-visit combined images)
- Structural and interface enhancements
 - Substantially improved options for sorting and filtering of selected data
 - Full consistency between table views (footprint and inventory display)
 - Enhanced "shopping cart" functionality, integration with DADS requests
 - Complete revision of help and FAQ information
 - GALEX catalog added to overlay options
 - Advanced color controls in Interactive Display

MAST Users Group – July 9, 2009

New NICMOS Images

Image of the Carina nebula included in the DR3 data. This color image is produced from F110W and F160W data obtained with NIC3 with a total depth of one orbit. With recent pipeline improvements, STSCI is reprocessing all NICMOS data (currently 40% complete)

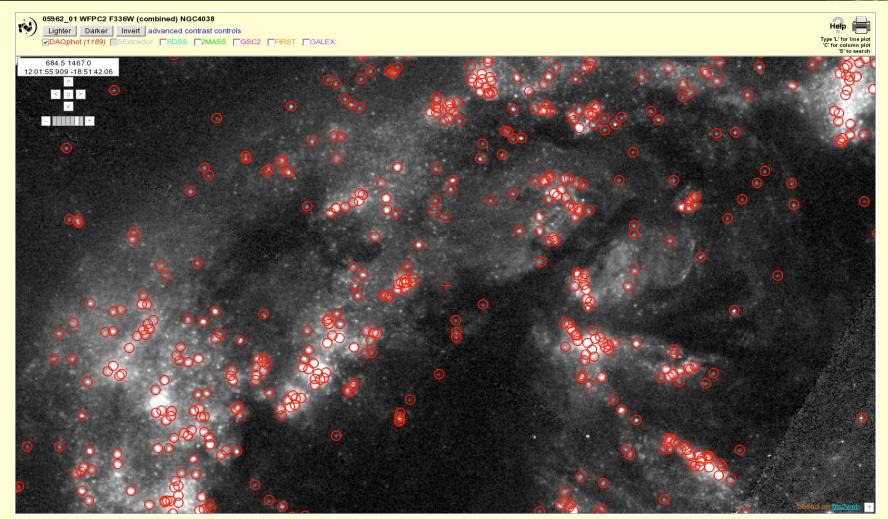

- Koekemoer, Gaffney developed postpipeline scripts to obtain Multidrizzle combination of reprocessed data
- All combined images reviewed by NICMOS team in order to validate pipeline improvements
 - Review directly on HLA candidate release images
 - Special web tools provided to facilitate review process
- Results very satisfactory; few images rejected
- DR3 included 25% of all NICMOS images (pre-NCS data)
- Benefits user community as well as NICMOS team (by facilitating quality verification)

MAST Users Group – July 9, 2009

ACS Grism data

- ST-ECF carried out extraction of 1-dimensional spectra from ACS Grism data
- DR3 included 1235 spectra from the UDF region estimated about 10% of all GRISM data potentially available
- Data are provided with previews 1-d plot, direct image, and 2-d spectral image
- Data hosted directly by ST-ECF, but fully integrated in footprint database

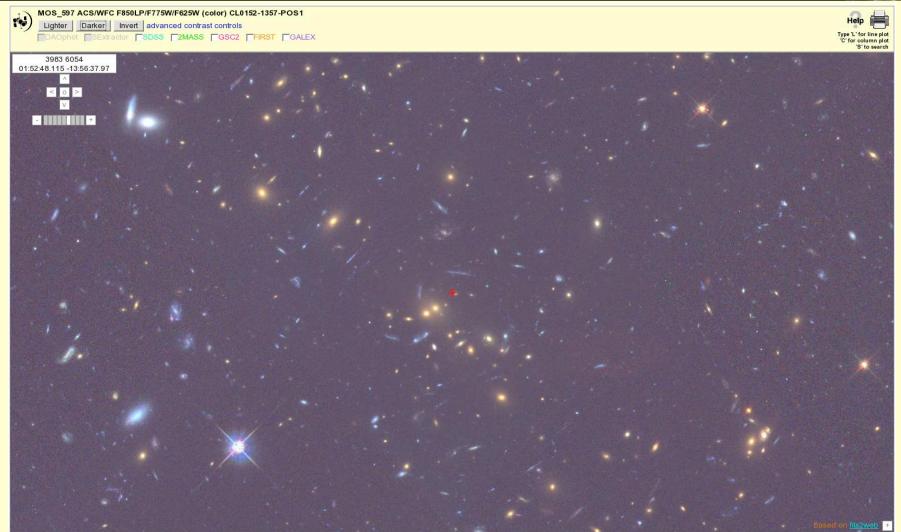
Preview of the extracted GRISM spectrum of a z=2.82 BAL QSO included in the DR3 data. The preview


includes a plot of the spectrum, a direct image, and a cutout of the two-dimensional GRISM data. A similar preview is available for each extracted target.

WFPC2 Source Lists

- Same structure as ACS Source Lists
 - Both DAOPhot and Source Extractor lists available
 - Obtained for over 95% of reprocessed WFPC2 data
 - Include CTE correction using Dolphin (2008) prescription
 - CTE correction based on point-source data
 - Extended source correction under development by ACS/WFPC2 team
 - Data used for CTE correction explicitly included in catalog files
- Very good consistency between magnitudes, positions in two sets of sources; match well to independent catalogs in spot checks
- However: Source Extractor lists not deep enough, currently working on improved parameter settings

A region of the WFPC2 image of the Antennae with the an overlay of the DAOPhot sources included in DR3



Prototype mosaics

- Combine overlapping multi-visit data
 - Unlike single-visit data, images cannot be registered from header information
 - New pipeline include astrometry matching step
 - First batch requires at least 4 exposures per filter per visit and narrow (4-month) time window
 - Ensure CR rejection from single-visit information
 - Not sensitive to long term changes in instrument
 - Future developments will relax such restrictions
- Only 8 mosaics available at release
 - Initial quality verification successful encouraging
 - Photometry and pixel-level data consistent with independent combination from ACS Science Team
 - PSF width within 3% of other combinations
 - More quality tests planned in near future with larger data set
- About 100 mosaics processed since release, awaiting full quality verification
 - 90% are expected to be released in current state; 10% have problems that will need reprocessing
 - Enhancements to pipeline may be needed
- We are very interested in feedback on usefulness, formats, quality, ancillary information that may be useful to typical users

MAST Users Group – July 9, 2009

Color image of CL0152-1357 generated automatically by the HLA mosaic pipeline. The color image is generated from F625W, F775W, and F850LP, for a total of 57200 s in 8 visits laid out in a 2x2 grid. This is one of 8 mosaics released with DR3; processing of these mosaics is fully automated.

MAST Users Group – July 9, 2009

Future plans

- Drivers:
 - Community input (User Survey, MUG, help requests, user comments)
 - HLA Board review
 - Long-term plan to enhance quality, consistency, scope of products
 - Fix known issues
- Tools:
 - Issue-tracking system
 - Classify issues as fixes, enhancements, new tasks
 - Identify severity/priority, time scale, person responsible
 - · Allows comments and progress tracking
 - Various types of reports available
 - Lightweigth system, very little overhead
 - Wiki pages for more complex planning
 - Basecamp for file sharing, meeting management
 - Frequent review of priorities, status
- High-level items recommended by MUG:
 - Enhance visibility of HLA within the community
 - Improve bandwidth at STScl
 - Identify underutilized data in general, track use of archival data and extract appropriate information
 - Improve treatment of spectral data

MAST Users Group – July 9, 2009

Future plans (cont.)

- Short term (1-2 months): complete the work started for DR3
 - Improve WFPC2 SExtractor source lists (ongoing)
 - Add more sample mosaics (already up to 100, pending quality verification)
 - Include more NICMOS data as reprocessing continues (ongoing)
 - Resolve known issues
- Medium term (3-6 months): Improve existing data products, prepare for new instruments
 - Revisit ancillary data, keyword information; modify products when necessary for better fidelity
 - Extend absolute astrometry enhancement to all HST data
 - Expected worst-case accuracy 0.4"
 - Typical accuracy 0.1-0.2"
 - Work with Instrument Teams to understand best products for WFC3, COS, possibly STIS
 - Define content, timetable for DR4; include products for new instruments as soon as practical
 - Incorporate reprocessed WFPC2 data with new pipeline
 - Move towards a continuous data flow model to release products in small batches
 - Improve mosaic pipeline to relax current restrictions
 - Carefully weigh resources needed for more general mosaic generation vs. other developments on the basis of community demand
 - Continue work with Chandra, Spitzer to integrate our footprint data
 - Support footprint service for APT
 - Enhance our quality testing
 - · Systematic intercomparison of repeated images and cross-instrument checks
 - Routine comparison with existing ground-based photometry
 - Production of additional diagnostics on alignment, photometry during pipeline processing
 - · Statistics of source distribution and properties to identify anomalous images
- Long term (1 year+):
 - Evaluate new software tools for enhanced interface
 - · Prototypes allow concurrent display of multiple image layers, contextual data through browser
 - · Stability, availability, and resource demands of software will be considered
 - Provide enhanced products for spectral data