

Common Archive Observation Model

What is CAOM and why should MAST use it?

Brian McLean

Roadmap for the Space Telescope Science Institute Archive and Data Center

Strategic Goals

- Increase the science research productivity of the astronomical community through the products and services we provide.
- Enable exemplary science through the development of science products and services.
- Maximize the long-term archival benefit of the data holdings within the STScI Archive and Data Center.
- Actively collaborate with other archive centers to increase the overall productivity and science return to the research community.
- Promote and engage the user community on the value and use of the STScI data holdings.

Public Science Multi-Mission Archive Advantages

- Primary point of entry for access to browse and access
 SCIENCE data for ALL missions housed at STScI.
- Browser-based search and visualization tools.
 - All data is available on disk for immediate access
 - proprietary rights can be enforced
- Identify related datasets from different missions to enable multi-wavelength science analysis.
 - Including community contributed or mission generated high level science products.
- Virtual Observatory compliant data access.
 - Users can easily discover data, retrieve and analyze using VO tools.
 - Inter-archive access

Improves scientific return and impact for all missions

Common Archive Observation Model

- Unified model for metadata for all archives
 - Enable cross-mission searches and enhance scientific value
 - Simplify access with common set of software
 - Model is extensible for mission specific metadata if needed
- Layered software
 - Use VO protocols for all services (internal & external)
 - Write access services once, use for all missions
 - Lower maintenance costs
- CADC developed and implemented CAOM v1
 - Collaborate with CADC to implement/extend model
 - Use CADC lessons learned and implement v2

Common Archive Observation Model v2.0 Summary of main concepts

OBSERVATION

- Metadata describing the characteristics of an observation
 - simpleObservation: describes a single set of observed photons
 - compositeObservation : describes the combination of 2 or more simpleObservations
- Proposal, Telescope, Instrument, Target, Proposal, Combination type, etc.
- PLANE (1:n planes per observation)
 - Metadata describing a distinct construct within the observation
 - e.g. multiple detectors or filters would each be a plane
 - Position (Footprint), Energy, Time, Polarization, Metrics, Provenance
- ARTIFACT (0:n artifacts per plane)
 - Metadata describing a distinct product file within each plane
 - e.g, image/spectrum, errors, weights, previews
 - Includes pointer (URI) to actual data files
- PART/CHUNK(0:n per artifact)
 - Metadata describing each unique product within file (e.g. multi-extension FITS)
 - SpatialWCS, SpectralWCS, TemporalWCS, PolarizationWCS
- Queries can access any of these layers
 - Can create views for VO defined data models e.g ObsCore and protocols e.g. ConeSearch, SIAP, SSAP

Current Status

- Leave mission databases unchanged and only create combined CAOM database for science queries
- Created CAOM database to support Portal development
- Created spatial functions, STC/S conversion functions
- Database loading
 - A) Scripts to copy data from mission db to CAOM db
 - B) IDL tool to harvest data from headers and/or mission db and load CAOM db
- Missions done: GALEX GR6, HLA images, IUE low dispersion spectra, FUSE
- In progress: IUE high dispersion, HLA spectra, HST, SWIFT-UVOT, KEPLER FFI

Current Plans

- Load Additional Missions
 - High Priority: KEPLER, GALEX GR7, HST High Level Science Products
 - Medium Priority : SAGE, XMM-OM, HST PR images
 - Low Priority: EUVE, HUT, UIT, WUPPE, HPOL, BEFS, TUES, IMAPS, COPERNICUS, FIRST
- Implement updated CAOM schema developed with CADC
 - Includes additional metadata about data provenance, processing, access control, statistics
- Build more sophisticated queries including temporal and spectral coverage