The Pan-STARRS Archive at STScl

rs Group

The PS1 public archive

- STScI will provide the public archive for PS1 data
- Planned services:
 - Catalog access
 - Simple form interface
 - Web services (including VO-compatible interfaces)
 - SQL query interface
 - Image access
 - Whole images
 - Image cutouts either as FITS files or JPEG previews
 - Interactive display
 - We will use products from the PS1 project with existing tools developed by MAST and PS1

MAST and Pan-STARRS

- Pan-STARRS is not a MAST-funded project!
 - STScI research funding for archive development; NSF funding requested for long-term operations
- PS1 images & database are large compared with current MAST data holdings
 - GALEX photon database is ~150 TB
 - Larger than PS1 but simpler data
 - Total MAST holdings currently ~ 300 TB
 - PS1: ~ 2000 TB
 - Large future missions: JWST (4 PB), WFIRST-AFTA (9 PB)
- MAST is very heavily used
 - > 5000 users, 1 million searches/month, 18 TB/month downloaded
- Requires a new scale of infrastructure, but MAST experience is relevant

PS1 data @ STScI: Images

- Coadded stacked images and single-epoch warps
 - All PS1 surveys will be included:
 - 3PI (30,000 sq deg north of declination -30°)
 - Medium Deep Surveys (10 fields, 7 sq deg each)
 - Celestial North Pole, Ecliptic Plane, M31
 - Images dominate total data volume (mainly 3PI, MDS)
 - Total data volume without difference images ~ 1.8 PB
 - Includes auxiliary images (wt, expwt, exp, mask, num)

PS1 data @ STScI: Catalogs

- Catalog databases
 - Including stack detections, single-epoch detections, forced photometry & objects (linking multiple epoch detections)
 - High-quality photometry and astrometry
 - Total database volume ~100 TB
 - Most database volume is in single-epoch detections
 - 3PI database (PV1: ~90% of 3PI sky area, still incomplete in plane):
 - -29.4×10^9 detections
 - 5.9 x 10⁹ objects
 - -1.4×10^9 objects with nDetections > 1
 - For comparison, SDSS DR9: 469 M objects (14,000 sq deg)

PS1 3π survey versus SDSS

	SD	SS	Pa	n-STARRS 3π
Sky area	10,000 sq deg		30,000 sq deg	
Sky region	High Galactic latitude		δ > -30°, includes Galactic plane	
	u	22.5		
	g	23.2	g	23.4
Filters and	r	22.6	r	23.2
Magnitude limits	i	21.9	i	22.7
	Z	20.8	Z	22.0
			У	21.1
Median Seeing FWHM	1.3"		1.1"	
Cadence	1 epoch		12 epochs per filter	

RA in Degrees

Dec in Degrees

PS1 Relative Photometric Calibration: Ubercal

- Ubercal (Finkbeiner, Schlafly): use repeat observations of PS1
- Differences between SDSS and PS1
- SDSS issues: stripes, north-south offsets
- Systematics down to 2-3 mmag!

RA in Degrees

3PI Object counts, nDetections>2 1.10x10⁹ objects

MAST Users Group

12/02/2014

3PI g/r/y mean colors 4.57x10⁸ objects

3Pl g/r/y mean colors 4.57x10⁸ objects

Status of archive preparations

- 2 PB of disks purchased for image storage
 - Located at Hawaii for use in data processing
 - Will be shipped back to STScI (with data) in January
 2015
- Database servers purchased & are now set up
 - Faster, more memory & cores than the current PS1 database machines in Hawaii
 - Current database was transferred via network and is available to PS1 science consortium
 - Final database will be copied in 2015

High-level schedule

STScI Specific PS1 Milestone	Timeframe	Pan STARRS Project-Wide Milestone
1 PB of STScI disks delivered to Hawaii	2012 May	
1 PB of disks delivered to Hawaii	2013 June	
DB & image subsets at STScI for experiments	2013 November	
	2014 April	Pan STARRS observations complete
Database servers purchased	2014 May	PV1 database complete; PV3 processing begins
Pan-STARRS workshop (@STScI)	2014 June	Pan-STARRS consortium meeting (@STScI)
PV2 database copied to STScI	2014 December	PV2 database complete
Prototype DB and image interfaces available for consortium testing at STScI	2015 January	PV3 images complete
2 PB data-loaded disks shipped from Hawaii; PV3 database copied to STScI	2015 January	PV3 database complete
All disks arrive at STScI, hardware and software integration begins	2015 February	
	2015 April	Public archive opens (1 year after end of obs)

- PV1, PV2, PV2 are versions of the image & catalog processing
- PSPS is the PS1 object catalog database
- Post-ship schedule is optimistic; might release DB only to start, images later

Sample PS1 image using HLA tools

Simple cutout search page for SAS2 + MDS field <u>demo</u>

Cutout size: 512

MAST Portal Catalog/Image Interface

- Hubble Source Catalog portal interface will be adapted for PS1
 - Similar structure: multi-epoch, multi-filter observations integrated with image database
 - Cutout services, interactive display, etc., are also being used for PS1

Note: Current PS1 catalog was used as astrometric reference for Hubble Source Catalog v0.3

- MAST will incorporate & benefit from PS1 data
 - PS1 images are a better background for AstroView
 - Current PS1 catalog is already being used as a deep astrometric reference catalog for HSC

Summary

- STScI archive will provide an integrated interface for access to PS1 catalogs & images
 - Reuse existing MAST and current PS1 databases and interfaces wherever possible
- MAST will utilize PS1 images and catalogs to improve our other data products
- Pan-STARRS is a step into big data for MAST
 - Valuable experience for future multi-petabyte datasets including JWST, WFIRST

EXTRA SLIDES

User Documentation

Confluence is being used to describe sample PS1 database queries in detail

Data products not @ STScI

- Difference images
 - Data volume large, probably fast enough to generate them on-the-fly
- Convolved images
 - Images convolved to match PSFs
 - Have not reached quality of unconvolved images (yet)
 - Could also be generated on demand
- Raw data
 - STScI will not run image processing pipeline