gPhoton: A MAST Archive of Every GALEX UV Photon Event and Software for Lightcurve and Image Creation

Chase Million (Million Concepts)
Bernie Shiao (STScI)
Scott Fleming (CSRA / STScI)
Michael Tucker (STScI summer intern)
Myron Smith (STScI, retired)
+several early beta testers

Image credits (right): Taken from Bianchi, Conti & Shiao 2014, J. Advances in Space Research, 53, 900

The GALEX Mission At A Glance

0.005 sec.

- Launched 28 April 2003
- 1.2 deg. diameter FoV
- FUV = 1350-1750 Å
- Phot. (5-6" resolution)

- Retired 28 June 2013
- FUV + NUV (simultaneously)
- NUV = 1750-2750 Å
- Spec. (R ~ 100-250)
- Microchannel Plate Detector Records photon events (x,y,t)
- Nearly all-sky survey (77% of sky), primary goal was to study star formation history of galaxies. Observed while in Earth's shadow (30 min. max.), could repeat a given field as desired.
- Mission split into several different sub-surveys:
 - AIS = Broad + shallow, $m \sim 20.5$, 100-200 s
 - MIS = Medium, $m \sim 23$, 1,500 s
 - DIS = Deep, $m \sim 25$, 30,000 s
 - NGS, Nearby Galaxies, *S* ~ 27.5, 200+ galaxies
 - GII program for guest observations, CAI for calibrations

Available GALEX Products – Example Visit Image (20.7 minutes)

GJ 3685A Flare

Use gMap and gAperture to study the double-peaked 2004 flare of GJ 3685A.

GJ 3685A 21 min. duration, 30 sec. sampling

from gPhoton.gMap import gMap

def main(): gMap(band='NUV', skypos=[176.91975, 0.25561], stepsz=30., skyrange=[0.0333, 0. 0333], cntfile='gj_3685a_count_movie.fits', trange=[766525335.,766526573.])

if __name__ == '__main__': main()

gPhoton – How To Install, Available Commands

Software is open-source, written in python.

https://github.com/cmillion/gPhoton

MAST page: https://archive.stsci.edu/prepds/gphoton/

- 1.1 trillion rows, distributed across 10 databases and 999 partitions (130 TB on disk).
- Larger than PanSTARRS 3π catalog (but not as many columns).
- No SQL required (coordinates, time bins, apertures) all in python wrapper.
- Enables creation of images and light curves at user-defined spatial and temporal scales.

Three primary commands:

- 1. gFind Given a coordinate and area, report available data as observing time ranges.
- 2. gMap Given a coordinate, area, and optional step size, create count and/or calibrated images and data cubes (movies).
- 3. gAperture Given a coordinate, step size, and optional apertures, create time series lightcurves that include counts and background-subtracted fluxes per time bin.

CR Dra Flares

from gPhoton.gAperture import gAperture

```
def main():
```

gAperture(band='NUV', skypos=[244.27246917, 55.26919386], stepsz=10., csvfile='cr_dra_lc.csv', radius=0.006, annulus=[0.007,0.009])

```
if __name__ == '__main__':
main()
```


Fig. 1 in Welsh et al. (2006), *A&A*, 458, 921.

M31 Wide-Field Image

[me@mymachine]\$ gMap -b 'NUV' --skypos [10.6833,41.2692] --skyrange [3,1] --count 'm31_nuv.fits' --coadd --memlight 10

Some Other Examples

M83 NUV

NGC 7293 (Helix Nebula) FUV

Some Other Examples

Possible Cataclysmic Variable

Possible Galactic Outburst

Some Other Examples – Kepler Field

AGN Album Images For Long-Term Variability

This AGN (CDFS MOS00-48, Gezari et al. (2013), *ApJ*, 766, 60) decreases in flux after 7 years. With gPhoton it's easy to create such albums of image frames to look for transients.


```
from gPhoton.gFind import gFind from gPhoton.gMap import gMap

def main():

# Get sets of observations (min. of 1000 second durations).

exp_times = gFind(band="nuv", skypos=[53.5173, -27.9419], quiet=True, minexp=1000.)

# How many of these sets are there?

n_sets = len(exp_times["NUV"]["t0"])

# Loop over each obs. set and create a count image.

for i, t_start, t_end in zip(xrange(n_sets), exp_times["NUV"]["t0"], exp_times["NUV"]["t1"]):

gMap(band="NUV", skypos=[53.5173, -27.9419], skyrange=[0.06666,0.06666], cntcoaddfile="coadd_ep"+'{0:03d}'.format(i+1)+".fits", trange=[[t_start, t_end]], overwrite=True)

if __name__ == "__main__":
    main()
```

gPhoton Status

- Public as of Aug. 2015. v1.27.0 = latest branch, calibration improvements, flagging.
- Intro. paper to be submitted (likely to ApJ) in a few weeks (v1.27.0 tied to paper).
- Roadmap for future development includes: GUI, support for spectra, support for other time-tagged missions, simulator / source injector, job management.
- MAST-led science: Project Blacklight = catalog of all GALEX sources that undergo variation at < 1 hour time scales (S. Fleming).
- White dwarf pulsators, eclipsing objects, stellar flares, SNe shock breakouts, sdB stars, Be stars, CVs, XRBs, other transients(?).
- Great synergy with PanSTARRS (deep, high spatial resolution images and optical colors for classification).
- Lessons learned (large, on-demand database of atomic-level data, server configuration, package development) applicable to TESS FFIs.
- TESS light curves on demand, without ever having to download a FITS file.