

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

The Exoplanet Characterization Toolkit

Presented By Kevin Stevenson For the MAST Users Group

01/24/2018

The goal of ExoCTK is to provide the entire exoplanet community with a coherently packaged set of tools that enable the planning, execution, reduction, and interpretation of observations aimed at exoplanet atmospheric characterization.

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

- Transit light-curve fitting tools (TLC)
- Limb-darkening calculator (LDC)
- IFS exoplanet spectral extraction (IFS)
- Atmospheric forward models (AFM)
- Bayesian atmospheric retrieval (BAR)
- Planetary atmospheres libraries and tools (PAL)
- Transit Observation & Reduction Tools (TOR)

Everyone!

- More than three-quarters of the code and data files currently in the ExoCTK repository have been contributed by individuals and groups outside of STScl, spanning several countries.
- ExoCTK has been presented to audiences at a variety of conferences and workshops and garnered enthusiastic support.
- Team at STScl consists of more than a dozen staff, postdocs, and students.

ExoCTK Team @ STScl

- Nikole Lewis (Co-PI)
- Kevin Stevenson (Co-PI, Project Manager)
- Jonathan Fraine (Deputy Project Manager)
- Natasha Batalha
- Giovanni Bruno
- Rafia Bushra
- Joe Filippazzo
- Jules Fowler
- Mike Fox
- Matt Hill
- Laurent Pueyo
- Abhi Rajan
- Jeff Valenti
- Hannah Wakeford

How does ExoCTK work?

- Leverages in house expertise in
 - Community software
 - Database maintenance
 - File formats
- ExoCTK uses I/O and file format requirements for inter-module compatibility
 - Incorporates a core module with common classes
- Automatically generates a Bibtex file with relevant citations
 - This is a requirement in our agreements with contributors
- Currently hosted using in-house computing resources
 - Will migrate to AWS, proposal for 1 year pilot program in preparation

How does ExoCTK work?

- All code is maintained on GitHub and is freely available
 - https://github.com/ExoCTK/ExoCTK
- Licensing restrictions
 - Use a standard 3-clause BSD license (unlimited redistribution, must reproduce copyright notice, cannot use name to endorse or promote other products)
 - Agreements reached with contributors is between STScI and that contributor
- Coding practices
 - Written in Python 3.5+
 - All code & documentation is required to be pep8 compliant (coding style)

When is ExoCTK?

- ExoCTK is maintaining an aggressive 2+ year schedule
- Ensure that the architecture and base modules are in place to facilitate sustainable growth and community contributions
- Will be ready in time to support JWST exoplanet observations
- ExoCTK is being leveraged to support goals of exoplanet DD ERS programs

https://confluence.stsci.edu/display/ExoCTK/ExoCTK+Home

https://exoctk.stsci.edu

Live Demo!!!

- Problem #1:
 - APT isn't set up to specify an observation with a given duration
 - Need to provide # of integrations (NINTS)
 - Determining the observation duration in APT is time consuming
- Problem #2:
 - Determining the number of groups (NGROUPS, up-the-ramp samples) without saturating the detector is non-trivial
 - Requires trial-and-error calculations with ETC
 - NIRISS/SOSS takes 2-3 minutes per calculation, time consuming
- Solution:
 - Given a specified observation duration and stellar magnitude, ExoCTK computes NINTS and NGROUPS for you (in a few seconds)

Time-Series Observation & Reduction Tools

Input and Instrument Parameters:

Rows	Columns	Amplifiers	Resets	Maximum Saturation Level (counts/s)	Frame Time (seconds per frame)	Transit Observation Time (hours)
2048	256	1	1	37500.0	5.491	5.49

APT Ready Outputs and Useful Tidbits:

Integrations	Groups	Integration Time (seconds per group)	Photon Collection Time (hours)	Total Duration Time (hours)	Observation Efficiency
900	3	16.474	4.118	5.491	0.75

- Future functionality: NGROUPS for target acquisition
- Will be ready in time for Cycle 1

- Contamination & Visibility Calculator:
 - Target overlap (NIRISS, NIRCam, MIRI) -> APT PA constraints
 - Observation start phase range -> APT timing requirements

https://exoctk.stsci.edu

PandExo: An Exoplanet ETC Tools to help the community with planning exoplanet observations.						
PandExo: The Exoplanet ETC Tools to help the community with planning exoplanet observations.						
Exoplant Discretification Tool						
James Webb Space Telescope	Hubble Space Telescope					
New Calculation Dashboard	New Calculation Dashboard					

New Features:

- 1. Select from grid of planet models
- 2. Errors render on output page (don't worry though, pandas are still there)
- 3. New binning package
- 4. More flexible input variable options
- 5. Easily print out allowed input keys
- 6. Updated HST simulator

Check out docs: natashabatalha.github.io/PandExo

https://exoctk.stsci.edu

Forward Modeling

- Pre-generated atmospheric forward models
 - Gas giant exoplanets (Jonathan Fortney)
 - Super-Earths & brown dwarfs (Caroline Morley)
 - ATMO library (Jayesh Goyal, ~1E6 models)
- Custom atmospheric forward models
 - ExoTransmit (Eliza Kempton)
 - CHIMERA (Mike Line)

Forward Modeling

Data Reduction

- Convert time series of 2D integrations into time series of 1D spectra
 - Cosmic ray rejection
 - Background subtraction
 - Optimal spectral extraction

• We want everyone's JWST data reduction modules!!!

Limb Darkening

- Multiple stellar models
 - Phoenix, Kurucz
- Large assortment of filters/grisms
 Spitzer/IRAC, HST/WFC3, JWST
- Select one or more LD models
 - 8 options (linear, quadratics, etc.)

- Interpolates model grids to determine best stellar model
- Will use stellar uncertainties to compute LD uncertainties

Limb Darkening

https://exoctk.stsci.edu

19

Light Curve Fitting

- Comprehensive library of physical and systematic model components
 - Ramps (time dependent)
 - IPSV (position dependent)
 - Unknowns (unknown dependent)
- Fit white and spectroscopic light curves
 - BATMAN (Laura Kreidberg)
 - SPIDERMAN (Tom Louden)
 - LMFIT

- Estimate uncertainties
 - MC³ (Patricio Cubillos)
 - EMCEE (Dan Forman-Mackey)
- Generate transmission/emission spectrum

https://exoctk.stsci.edu

Light Curve Fitting

https://exoctk.stsci.edu

Atmospheric Retrieval

- Estimate physical parameter uncertainties under a Bayesian framework
 - CHIMERA (Mike Line)
- Example parameters
 - Molecular abundances
 - Thermal structure
 - C/O
 - Metallicity
 - Clouds

Atmospheric Retrieval

