
IDF Cookbook

Bernard GODARD

Version 1.0, 4 November 2004

Contents

1 Introduction 2

2 Combining IDF files 3
2.1 Command line method . . . . . . . . . . . . . . . . . . . . . . 3
2.2 GUI method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Combining the Bad Pixels Maps . . . . . . . . . . . . . . . . . 4

3 Screening IDF files 5
3.1 Command line method . . . . . . . . . . . . . . . . . . . . . . 5
3.2 GUI method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Screening, Combining and the Bad Pixels Map . . . . . . . . . 6

4 Removing the orbital motion of a source in a close binary
system 8

5 Time-resolved Spectroscopy 11

6 Time-resolved Photometry 12
6.1 Extracting the lightcurve . . . . . . . . . . . . . . . . . . . . . 12
6.2 Adding lightcurves . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Combining lightcurves . . . . . . . . . . . . . . . . . . . . . . 14
6.4 Spectral Power Density Estimation . . . . . . . . . . . . . . . 15

1



1 Introduction

CalFUSE, the FUSE calibration pipeline, was originally designed before the
launch of the satellite. As unexpected instrumental effects were discovered
during the telescope operations, changes were made to the pipeline to correct
for these, leading to a cumbersome design.

In 2002, a new pipeline design was conceived. The goal was not only to
take into account all the newly discovered instrumental effects, but to make
it easier to add further instrumental corrections. The new design is more
flexible, thus maintenance is easier. Moreover it makes the pipeline work
considerably faster.

Up to version 2.4, CalFUSE converts time-tag data to a 2-dimensional
image in an early step, making it hard to add a module to correct for time-
dependent effects such as mirror motions. CalFUSE 3 keeps the data in the
format of a time tagged events list until the extraction. Histogram files are
also converted to a list of events, but in that case all events are tagged with
the same time value.

This events list is stored in the Intermediate Data File (IDF). This FITS
file is an unified input/output format for most of the pipeline modules. The
pipeline subroutines read or write the keywords, rows and columns in this file.
The unified input/output format for most of the pipeline routines means that
the order of operation of the pipeline modules can be changed (to a certain
extent) or new modules can easily be added.

The Intermediate Data File (IDF) is at the center of the new design. It
is a FITS file with 4 Header Data Units (HDU).

The first HDU consists of the header originally copied from the raw file
which gets modified as the IDF goes through the different pipeline steps. It
contains information about the proposal, the exposure, the observation and
the calibration as well as engineering and housekeeping data.

The second HDU is a time-tagged list of events with their raw XY posi-
tions, weights, pulse height, as well as other parameters set to dummy values
at the creation of the file (like their XY corrected positions and assigned wave-
lengths) and computed when the IDF goes through the appropriate pipeline
module.

The third HDU is the list of good time intervals.
The fourth and last HDU lists, for each second of the exposure, house-

keeping parameters like limb angle, orbital velocity, latitude and longitude,
as well as the LiF and SiC Y centroids. If present, a housekeeping file, gen-

2



erated from the engineering telemetry, is used to fill some columns of this
time-line. Otherwise these columns are filled with the best guess from the
engineering keywords of the main header. This is the first time the pipeline
makes use of the housekeeping files. It allows for a time-dependent correction
of such effects as dead-time and count-rate Y distortion as well as screening
for detector high voltage variations.

Since in the IDF file events are flagged as good or bad, but never dis-
carded, users can change their selection criteria without rerunning the pipeline.

This document deals with the analysis tools that work on IDF files. The
tools described are from CalFUSE 3.0.8. If you are using a different version
of the pipeline, the examples in this document might not work. Note also
that a lot of these tools are not available in pipeline 3.0 before 3.0.8. The
goal of this document is to help you:

• modify IDF files to get better output spectra.

• extract interesting information from IDF files.

2 Combining IDF files

IDF files for different exposures can be combined into a single one. This
results in a higher Signal to Noise ratio, allowing a better computation of the
background and the Y centroid. Thus it is recommanded to combine your
exposures before extracting, especially if your target is faint.

The exposures to be combined should generally come from the same ob-
servation (or two observations of the same target in the same aperture that
are close in time) , the same detector, and the same segment.

2.1 Command line method

You can combine your IDF files from the command line with idf combine.

Usage:

idf_combine [-ahbc] [-v level] output_idf_file input_idf_files

Options:

-h: this help message

-v: verbosity level (=1; 0 is silent)

3



-a: ignore EXP_STAT keyword

-c: recalculates Y centroids (use target events)

-b: store ORBITAL_VEL in a float

Here is how to combine all exposures of observation M1010101 for segment
2A.

idf_combine -c M1010101all2attagfidf.fit M1010101*2attagfidf.fit

Without the c switch, the Y centroid of the LiF and SiC target apertures
wouldn’t be re-calculated. The EXP ID keyword in the main header of the
output file is set to ’999’. Thus after extraction, you will get the two files:

M10101019992alifttagfcal.fit

M10101019992asicttagfcal.fit

The a switch makes the program ignore the EXP STAT keyword. This
means that exposures that have EXP STAT strictly positive will not be re-
jected as would be the case without the a switch. The EXP STAT keyword
is set to a strictly postive value by the pipeline if the exposure is bad or for
histogram (HIST) files that contain bursts, SAA crossing or low limb angle:
these exposures contain many bad events that cannot be screened because
HIST files are not time-tagged.

The b switch will be discussed later.

2.2 GUI method

You can also use the IDL program CF EDIT to combine your exposures.
Open all the IDF files you want to combine. Don’t forget to tell CF EDIT
to recalculate the Y centroids (see the CF EDIT user manual) and save the
result. With CF EDIT, you can also align your exposures on a spectral
feature as well as modify the screening parameters.

2.3 Combining the Bad Pixels Maps

After combining your IDF files and before extracting, you should generate
a Bad Pixels Map (BPM) file for your combined file. This is done with
bpm combine. cf bad pixels, the pipeline BPM generator generates a
BPM file for each exposure from its IDF file (and if present the associated

4



housekeeping and jitter files), but cannot generate a BPM for an IDF file
containing several exposures. bpm combine will combine the BPM files
in the same way idf combine or CF EDIT combine IDF files. It takes into
account the possible alignment performed on the exposures with CF EDIT.

The syntax for bpm combine is:

bpm_combine M1010101all2attagfbpm.fit M1010101all2attagfidf.fit

The program uses the information in the main header of the combined
IDF file to find which IDF files were used to make it. It then opens these
IDF files to find the associated BPM files filenames. Last it opens the BPM
files for each exposures and combines them. For this program to work, all
the IDF files that were used to generate the combined IDF file as well as
their associated BPM files must be in the current directory.

3 Screening IDF files

Selecting the night-time events only for extraction to make the geocoron-
nal lines disappear or keeping the events that happen during a burst are
two examples of what can be done with idf screen or CF EDIT. Screening
concerns only time-tagged (TTAG) IDF files.

3.1 Command line method

idf screen allows the user to alter the screening performed by the pipeline.

Usage:

idf_screen [-h] [-v level] input_idf_file output_idf_file

timeflag value

Arguments :

timeflag : USER/JITR/OPUS/BRST/HV/SAA/LIMB/DAY

value : GOOD/BAD/EITHER

Options:

-h: this help message

-v: verbosity level (=1; 0 is silent)

The following example selects only the night-time events.

5



idf_screen M10101010011attagfidf.fit M10101010011a_night_ttagfidf.fit \

DAY GOOD

This just modifies the header keyword DAYNIGHT and recalculates some
other header keywords like EXPTIME and EXPNIGHT. For timeflags other
than DAY, the behaviour is different. It modifies the events list and timeline.

idf_screen M10101010011attagfidf.fit M10101010011a_ignorebursts_ttagfidf.fit \

BRST EITHER

In the above example, the timeline and events BURSTS timeflags will all
be set to zero.

idf_screen M10101010011attagfidf.fit M10101010011a_jitter_ttagfidf.fit \

JITR BAD

In the above example, the timeline and events list JITR timeflags will all
be inverted. Thus the extraction routine will think that the events where the
jitter is good are the events where in fact the jitter is bad. It is then tricked
into extracting only the events for which the jitter is actually bad (and the
other conditions are satisfied).

Note that using one of the timeflags other than DAY with the value
GOOD doesn’t change the screening parameters. In that case, idf screen
doesn’t generate the output file.

idf screen does not update the GTIs table.

3.2 GUI method

With CF EDIT, you can perform screening in the same way as idf screen
does, using the EVENTS SELECTION button, with the added advantage
of seeing in real-time the effects of your change. CF EDIT also allows PHA
screening and selection of Good Time Intervals (GTIs). For more informa-
tion, consults the CF EDIT user manual.

3.3 Screening, Combining and the Bad Pixels Map

Once you have modified the screening parameters (except for pulse-height),
you need to regenerate the BPM file with cf bad pixels. Since cf bad pixels
doesn’t operate on a combined file, if you use CF EDIT to simultaneously

6



combine and screen a file, you won’t be able to generate a BPM file for the
output.

If you really care about the bad-pixels (for example if there is a pothole
in a spectral feature you are interested in) , here is the way to do it. Let
us assume, we have a stack of exposures M1010101*1attagfidf.fit that we
want to combine, selecting only the night-time events. Run idf screen or
CF EDIT on each exposures selecting only the night-time events. The result
is a stack of IDF files M1010101*1a night ttagfidf.fit. On each of these files,
run cf bad pixels. Combine the screened IDF files with idf combine or
CF EDIT. Run bpm combine on the combined IDF file.

Here is a shell script that does all of this:

#!/bin/sh

#

# Takes one argument : observation rootname (example: M1010101)

# Selects the night-time events only

# Combines all the IDF files

# Creates the associated BPM file

# This for each segment: 1a, 1b, 2a and 2b

#

rm *ttagfbpm.fit

rm *_night_ttagfidf.fit

for seg in "1a" "1b" "2a" "2b"

do

str=${1}[0-8]??${seg}ttagfidf.fit

exposures=‘ls $str‘

for expo in $exposures

do

exposcreen=‘echo $expo | sed -e ’s/ttag/_night_ttag/g‘

idf_screen $expo $exposcreen DAY GOOD

cf_bad_pixels $exposcreen

done

str2=${1}[0-8]??${seg}_night_ttagfidf.fit

idf_combine -c ${1}all${seg}_night_ttagfidf.fit $str2

bpm_combine ${1}all${seg}_night_ttagfbpm.fit \

7



${1}all${seg}_night_ttagfidf.fit

done

exit 0

4 Removing the orbital motion of a source in

a close binary system

If you have a TTAG observation of a source in a close binary system, you
might be interested in removing the orbital motion that smears out the photo-
spheric lines. For a circular orbit, you can use remove target orbital motion.

Usage:

remove_target_orbital_motion [-hb] [-v level]

input_idf_file output_idf_file

mjd0 period vrmax

[ra_h ra_m ra_s dec_d dec_m dec_s]

Arguments:

mjd0 : (Geocentric or Heliocentric) Modified Julian Day

of closest approch on orbit.

period : Period in seconds.

vrmax : Maximum radial velocity in km/s

ra_h ra_m ra_s dec_d dec_m dec_s : Optional RA and DEC of target.

If present mjd0 is interpreted

as Heliocentric.

Options:

-h: this help message

-v: verbosity level (=1; 0 is silent)

-b: update timeline doppler information (required for BPM)

Note that you should have:

(obstime−mjd0)

T
∗ δ T � T

8



where T is the orbital period, dT the uncertainty on the period, obstime
the time of the observation and mjd0 a modified julian day for which the
target is at its closest approch on an orbit. If this is not the case or if you
don’t know mjd0, you should try with different values of mjd0 going from
obstime to obstime+T.

If mjd0 and obstime are not close in time, you should take into account
the heliocentric light-time delay (Note that the light-time delay due to the
systemic velocity is generally already accounted for in the period as mea-
sured from Earth on a long time-base). Thus you should probably use the
heliocentric version of remove target orbital motion, which means that
you need to input the RA and DEC of the target. If your value of mjd0 is
geocentric, you will need to convert it to heliocentric. You can use mjd2hjd
to do so.

Usage:

mjd2hjd [-h] [-v level] mjd ra_h ra_m ra_s dec_d dec_m dec_s

Arguments:

mjd : Modified Julian Day.

ra_h ra_m ra_s dec_d dec_m dec_s : RA and DEC of target.

Options:

-h: this help message

-v: verbosity level (=1; 0 is silent)

The b switch in remove target orbital motion tells the program to
update the timeline doppler information in the output IDF file. This is
required if you want to correct for potholes. In that case you should run
cf bad pixels on the output of remove target orbital motion. This also
means that if you want to correct for bad pixels, you should not have com-
bined your exposures into a single IDF file before removing the orbital mo-
tion.

The IDF file with updated doppler information uses a bigger container
for doppler information than a normal IDF file because close binary systems
can have very large orbital velocity. idf combine can read these files, but
you may get an overflow when it tries to write the output file. To prevent
this, use the b switch with idf combine to combine such files.

The following script remove the target orbital motion, combines the ex-
posures into a single IDF file and generates an associated BPM file.

9



#!/bin/sh

#

# Takes 10 arguments :

# 1 : observation rootname (example: M1010101)

# 2 : Heliocentric Modified Julian Day of closest approch on orbit.

# 3 : period in seconds

# 4 : Maximum radial velocity in km/s

# 5 6 7 : RA of target - h , min, sec

# 8 9 10: DEC of target - deg, min, sec

#

# Removes the orbital motion

# Combines all the IDF files

# Creates the associated BPM file

# This for each segment: 1a, 1b, 2a and 2b

#

rootname=$1

hmjd=$2

period=$3

vmax=$4

rah=$5

ram=$6

ras=$7

decd=$8

decm=$9

shift 1

decs=$9

rm *ttagfbpm.fit

rm *_corr_ttagfidf.fit

for seg in "1a" "1b" "2a" "2b"

do

str=${rootname}[0-8]??${seg}ttagfidf.fit

exposures=‘ls $str‘

for expo in $exposures

do

10



expocorr=‘echo $expo | sed -e ’s/ttag/_corr_ttag/g‘

remove_target_orbital_motion -b $expo $expocorr \

$hmjd $period $vmax \

$rah $ram $ras \

$decd $decm $decs

cf_bad_pixels $expocorr

done

str2=${rootname}[0-8]??${seg}_corr_ttagfidf.fit

idf_combine -c -b ${rootname}all${seg}_corr_ttagfidf.fit $str2

bpm_combine ${rootname}all${seg}_corr_ttagfbpm.fit \

${rootname}all${seg}_corr_ttagfidf.fit

done

exit 0

5 Time-resolved Spectroscopy

The idf cut program allows you to cut an IDF file into several smaller IDF
files into which the records of the input IDF files are sorted according to their
time-phase.

Usage:

idf_cut [-hm] [-v level] idf_file RefTime Period Nout

Arguments:

RefTime : Reference Time in seconds since EXPSTART

Period : Period in seconds

Nout : Number of output files.

Options:

-m: interprets RefTime as MJD

-h: this help message

-v: verbosity level (=1; 0 is silent)

The name of the Nout output IDF files are

{input_IDF_filename}.p{X}.fit where X=0..Nout-1

11



An event from the input file gets sorted into output file X if it happened
at time t such that there exists an integer k that satisfies :

X

Nout
T ≤ t−RefT ime− kT <

X + 1

Nout
T

where T is the period.
The m switch is used to specify that RefTime is a Geocentric Modified

Julian Day instead of a number of seconds since start of exposure.
If you just want to cut your files in time bins without folding on a period,

use start of exposure for the reference time, end of exposure minus start of
exposure for the period and choose the number of bins you want with the
last parameter.

If you are running this program on a combined IDF files, note that some
of the output files may be empty, because of the gaps between the exposures.

If you care about the bad pixels correction, you need to run cf bad pixels
on each of the output files. Again this means that at this point you should
not have combined the exposures.

6 Time-resolved Photometry

6.1 Extracting the lightcurve

You can extract the lightcurve from an IDF file with ttag lightcurve.

Usage:

ttag_lightcurve [-hf] [-v level] input_file output_file windows_file

bins LiForSiC

Arguments:

input_file : ttag IDF file

output_file : ASCII file with 2 columns:

- time (MJD)

- countrate corrected for deadtime

windows_file : input ASCII file with 2 columns :

- start of spectral windows

12



- stop of spectral windows

bins : bin size in seconds

LiForSiC : 1=LiF, 2=SiC

Options:

-h: this help message

-f: output calibrated flux (erg/cm2/s) instead of countrate

-v: verbosity level (=1; 0 is silent)

All photons that are not in the selected channel, that are not in the
spectral windows (defined in the spectral windows file), that have LOCA-
TION FLAGS not equal to zero or that are not in the good times are not se-
lected. Thus the lightcurve extraction result depends on the way you screened
the IDF file.

The f switch makes the program output the calibrated flux instead of the
countrate. Note that no background substraction is performed.

The output lightcurve is not defined outside the good time intervals. The
output ASCII file is tagged with the Geocentric Modified Julian Day. To
convert the time-tag from Geocentric to Heliocentric in the whole file, use
ttag lightcurve mjd2hmjd:

Usage:

ttag_lightcurve_mjd2hmjd [-h] [-v level] output_file input_file

hh mm ss dd mm ss

Arguments:

input_file : ASCII file with 2 columns :

- time (MJD)

- signal

output_file : ASCII file with 2 columns :

- time (HMJD)

- signal

hh mm ss dd mm ss : RA and DEC of target

Options:

13



-h: this help message

-v: verbosity level (=1; 0 is silent)

6.2 Adding lightcurves

If you want to sum the lightcurves from different channels, use ttag lightcurve channel sum

Usage:

ttag_lightcurve_channel_sum [-h] [-v level] output_file

input_file1 input_file2

Arguments:

input_files : ASCII files with 2 columns :

- time

- signal

output_file : ASCII file with 2 columns :

- time

- signal

Options:

-h: this help message

-v: verbosity level (=1; 0 is silent)

You can only sum 2 files at a time.
Note that the difference dt between the two first times appearing in the

first input file is critical as explained below.
For each time t appearing in the first input file, the program looks for a

time t2 appearing in the second input file that has value between t-dt/2 and
t+dt/2. If t2 exists then t will appear in the output file.

Only the times that are common (in the way described above) to both
inputs will appear in the output file.

6.3 Combining lightcurves

If you want to combine lightcurves for different exposures or observations,
use ttag lightcurve combine

Usage:

14



ttag_lightcurve_combine [-h] [-v level] output_file input_files

Options:

-h: this help message

-v: verbosity level (=1; 0 is silent)

6.4 Spectral Power Density Estimation

To generate a periodogram for the lightcurve, use ttag lightcurve periodogram

Usage:

ttag_lightcurve_periodogram [-h] [-v level] input_file output_file

minf, maxf, stepf

Arguments:

input_file : an ASCII file with 2 columns :

- time (JD or MJD, Helio- or Geo-centric)

- countrate

output_file : an ASCII file with 2 columns :

- frequency (Hz)

- normalized estimated power spectral density

minf : start frequency (Hz)

maxf : end frequency (Hz)

stepf : frequency step (Hz)

Options:

-h: this help message

-v: verbosity level (=1; 0 is silent)

15


