O VI Absorption Lines and the IGM Baryon Content

Todd M. Tripp University of Massachusetts

Left: All-sky HVC map (Galactic coords.) High-velocity clouds detected in 21cm emission (contours) and O VI absorption (filled circles). Colors indicate velocity as shown by the scale bar.

Sembach et al. 2003 Wakker et al. 2003 Savage et al. 2003

The Baryon Inventory and the Missing Baryons

THE ASTROPHYSICAL JOURNAL, 503:518–530, 1998 August 20 © 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE COSMIC BAR

M. FUKU Institute for Advanced Study, Princeton, NJ 08540; and Institute for Cost Mon. Not. R. astr. Soc. (1992) 258, Short Communication, 14P-18P

The baryon content of the Universe

Massimo Persic^{1, 2} and Paolo Salucci¹

¹SISSA, Strada Costiera 11, I-34014 Trieste <u>1912 The American Astronomical Society. An Inguis</u> ²Osservatorio Astronomico, via G.B. Ti

Accepted 1992 June 22. Received 1993

Summing up the wellobserved baryons in the nearby universe, only 30-50% of the baryons predicted by D/H and the CMB can be readily accounted for.

LIGHT ELEMENT NUCLEOSYNTHESIS: A FALSE CLUE?

N. YU. GNEDIN AND J. P. OSTRIKER Princeton University Observatory, Princeton, NJ 08544 Received 1992 February 10; accepted 1992 May 27

ABSTRACT

We propose that the dynamically estimated value for the cosmological density $r \times 10^{\pm 0.20}$, reflects the baryon density at decoupling, resulting in lower initial, primordial

THE ASTROPHYSICAL JOURNAL, **241**:1–24, 1980 October 1 © 1980. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE EFFECTS OF X-RAY ABSORPTION ON THE SPECTRA OF DISTANT OBJECTS

PAUL R. SHAPIRO AND JOHN N. BAHCALL Institute for Advanced Study Received 1980 March 5; accepted 1980 April 22

ABSTRACT

We have calculated in detail the X-ray absorption spectrum above 0.1 keV that would be introduced into the continuous X-ray spectrum of a quasar by an intervening uniform, hot ($T \ge 10^6$ K), intergalactic gas with a small admixture of atoms of C, N, O, Ne, Mg, Si, S and Fe. This work is relevant to the well-known search for cosmologically distributed "missing mass." Our results indicate that soft X-ray absorption can be appreciable (i.e., $\tau \ge 1$) for all quasar X-ray

THE ASTROPHYSICAL JOURNAL, 241:1–24, 1980 October 1 © 1980. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE EFFECTS OF X-RAY ABSORPTION ON THE SPECTRA OF DISTANT OBJECTS

PAUL R. SHAPIRO AND JOHN N. BAHCALL Institute for Advanced Study Received 1980 March 5; accepted 1980 April 22

X-RAY ABSORPTION BY THE HOT INTERGALACTIC MEDIUM

ROSALBA PERNA AND ABRAHAM LOEB

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1998 April 7; accepted 1998 June 24; published 1998 July 22

ABSTRACT

The current census of observed baryons in the local universe is still missing a significant according to standard big bang nucleosynthesis. Numerical simulations predict that most of the are in a hot intergalactic medium, which is difficult to observe through its X-ray emission Zeldovich effect. We show that the next generation of X-ray satellites will be able to detect thi

THE ASTROPHYSICAL JOURNAL, 241:1–24, 1980 October 1 © 1980. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE EFFECTS OF X-RAY ABSORPTION ON THE SPECTRA OF DISTANT OBJECTS

PAUL R. SHAPIRO AND JOHN N. BAHCALL Institute for Advanced Study Received 1980 March 5; accepted 1980 April 22

X-RAY ABSORPTION BY THE HOT INTERGALACTIC MEDIUM

ROSALBA PERNA AND ABRAHAM LOEB

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1998 April 7; accepted 1998 June 24; published 1998 July 22

ABSTRACT

THE X-RAY FOREST: A NEW PREDICTION OF HIERARCHICAL STRUCTURE FORMATION MODELS

UFFE HELLSTEN,¹ NICKOLAY Y. GNEDIN,² AND JORDI MIRALDA-ESCUDÉ^{3,4} Received 1998 April 3; accepted 1998 July 17

ABSTRACT

We use numerical simulations of structure formation in a cold dark matter model to predict the absorption lines in the soft X-rays produced by heavy elements in the shock-heated intergalactic medium at low redshift. The simulation incorporates a model for heavy-element production in galaxies and the

- Cen & Ostriker (1999)
- Dave et al. (1999)
- Hydrodynamic simulations of cosmological structure growth
- 30 50 % predicted to be in low-density, shockheated gas at 10⁵ - 10⁶ K

Difficult to observe!

Halo physical conditions and chemical enrichment constrain fundamental aspects of galaxy evolution.

> For example, when gas accretes onto galaxies, is it shock heated to $\sim 10^6$ K (conventional model), or does it remain cool, (i.e., "cold mode" accretion, Keres et al. 2005)?

WIYN + HST image of M82 (Gallagher et al.)

How do galactic superwinds affect galaxy and large-scale structure evolution?

Searching for the Missing Baryons with UV and X-ray Absorption

Ion fractions from Shapiro & Moore:

Number of O VI Absorbers per Unit Redshift:

- Tripp et al. (2006): survey of extragalactic O VI absorbers in the spectra of 16 QSOs
- STIS echelle (E140M) and FUSE spectra
- 51 intervening O VI absorbers (excluding systems within 5000 km/s of the QSO redshift)
- Absorber redshifts range from 0.002 to 0.495
- Danforth et al. (2006): survey of lower-redshift QSOs/AGNs observed with FUSE

Number of O VI Absorbers per Unit Redshift:

Number of O VI Absorbers per Unit Redshift: **Observations vs. Theory**

Closest galaxy is at a projected distance of 999 kpc, and yet the absorber has a high metallicity: [M/H] = -0.3

How did such highly enriched (and quiescent) gas end up in this location?

Searching for the Missing Baryons with UV and X-ray Absorption

SUMMARY

- We're finding lots of extragalactic O VI absorbers
- dN/dz statistics are consistent with predictions from hydrodynamic simulations
- MORE WORK (AND MORE DATA) ARE NEEDED.
- The detailed properties differ from naive expectations, and it is likely that these absorbers will provide a variety of insights about the role of the IGM in galaxy evolution